"vscode:/vscode.git/clone" did not exist on "7f3e9b8695e80aa1f7a5ee55d025eeb8ee795602"
test_transforms.py 21.1 KB
Newer Older
1
from __future__ import absolute_import, division, print_function, unicode_literals
2
import math
3
import os
4

David Pollack's avatar
David Pollack committed
5
6
7
import torch
import torchaudio
import torchaudio.transforms as transforms
Vincent QB's avatar
Vincent QB committed
8
9
import torchaudio.functional as F
from torchaudio.common_utils import IMPORT_LIBROSA, IMPORT_SCIPY
David Pollack's avatar
David Pollack committed
10
import unittest
11
import common_utils
David Pollack's avatar
David Pollack committed
12

13
14
15
16
17
18
if IMPORT_LIBROSA:
    import librosa

if IMPORT_SCIPY:
    import scipy

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
RUN_CUDA = torch.cuda.is_available()
print("Run test with cuda:", RUN_CUDA)


def _test_script_module(f, tensor, *args, **kwargs):

    py_method = f(*args, **kwargs)
    jit_method = torch.jit.script(py_method)

    py_out = py_method(tensor)
    jit_out = jit_method(tensor)

    assert torch.allclose(jit_out, py_out)

    if RUN_CUDA:

        tensor = tensor.to("cuda")

        py_method = py_method.cuda()
        jit_method = torch.jit.script(py_method)

        py_out = py_method(tensor)
        jit_out = jit_method(tensor)

        assert torch.allclose(jit_out, py_out)

Soumith Chintala's avatar
Soumith Chintala committed
45

David Pollack's avatar
David Pollack committed
46
47
class Tester(unittest.TestCase):

48
    # create a sinewave signal for testing
49
    sample_rate = 16000
David Pollack's avatar
David Pollack committed
50
    freq = 440
51
    volume = .3
52
53
54
    waveform = (torch.cos(2 * math.pi * torch.arange(0, 4 * sample_rate).float() * freq / sample_rate))
    waveform.unsqueeze_(0)  # (1, 64000)
    waveform = (waveform * volume * 2**31).long()
55
    # file for stereo stft test
56
    test_dirpath, test_dir = common_utils.create_temp_assets_dir()
57
58
    test_filepath = os.path.join(test_dirpath, 'assets',
                                 'steam-train-whistle-daniel_simon.mp3')
David Pollack's avatar
David Pollack committed
59

60
61
62
63
64
    def scale(self, waveform, factor=float(2**31)):
        # scales a waveform by a factor
        if not waveform.is_floating_point():
            waveform = waveform.to(torch.get_default_dtype())
        return waveform / factor
65

66
67
68
69
    def test_scriptmodule_Spectrogram(self):
        tensor = torch.rand((1, 1000))
        _test_script_module(transforms.Spectrogram, tensor)

70
71
72
73
    def test_scriptmodule_GriffinLim(self):
        tensor = torch.rand((1, 201, 6))
        _test_script_module(transforms.GriffinLim, tensor, length=1000, rand_init=False)

David Pollack's avatar
David Pollack committed
74
75
76
77
    def test_mu_law_companding(self):

        quantization_channels = 256

78
79
80
        waveform = self.waveform.clone()
        waveform /= torch.abs(waveform).max()
        self.assertTrue(waveform.min() >= -1. and waveform.max() <= 1.)
David Pollack's avatar
David Pollack committed
81

82
83
        waveform_mu = transforms.MuLawEncoding(quantization_channels)(waveform)
        self.assertTrue(waveform_mu.min() >= 0. and waveform_mu.max() <= quantization_channels)
David Pollack's avatar
David Pollack committed
84

85
        waveform_exp = transforms.MuLawDecoding(quantization_channels)(waveform_mu)
86
        self.assertTrue(waveform_exp.min() >= -1. and waveform_exp.max() <= 1.)
87

88
89
90
91
92
93
94
95
    def test_scriptmodule_AmplitudeToDB(self):
        spec = torch.rand((6, 201))
        _test_script_module(transforms.AmplitudeToDB, spec)

    def test_scriptmodule_MelScale(self):
        spec_f = torch.rand((1, 6, 201))
        _test_script_module(transforms.MelScale, spec_f)

96
97
98
99
100
101
102
103
104
105
106
107
108
109
    def test_melscale_load_save(self):
        specgram = torch.ones(1, 1000, 100)
        melscale_transform = transforms.MelScale()
        melscale_transform(specgram)

        melscale_transform_copy = transforms.MelScale(n_stft=1000)
        melscale_transform_copy.load_state_dict(melscale_transform.state_dict())

        fb = melscale_transform.fb
        fb_copy = melscale_transform_copy.fb

        self.assertEqual(fb_copy.size(), (1000, 128))
        self.assertTrue(torch.allclose(fb, fb_copy))

110
111
112
113
    def test_scriptmodule_MelSpectrogram(self):
        tensor = torch.rand((1, 1000))
        _test_script_module(transforms.MelSpectrogram, tensor)

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    def test_melspectrogram_load_save(self):
        waveform = self.waveform.float()
        mel_spectrogram_transform = transforms.MelSpectrogram()
        mel_spectrogram_transform(waveform)

        mel_spectrogram_transform_copy = transforms.MelSpectrogram()
        mel_spectrogram_transform_copy.load_state_dict(mel_spectrogram_transform.state_dict())

        window = mel_spectrogram_transform.spectrogram.window
        window_copy = mel_spectrogram_transform_copy.spectrogram.window

        fb = mel_spectrogram_transform.mel_scale.fb
        fb_copy = mel_spectrogram_transform_copy.mel_scale.fb

        self.assertTrue(torch.allclose(window, window_copy))
        # the default for n_fft = 400 and n_mels = 128
        self.assertEqual(fb_copy.size(), (201, 128))
        self.assertTrue(torch.allclose(fb, fb_copy))

133
    def test_mel2(self):
PCerles's avatar
PCerles committed
134
        top_db = 80.
135
        s2db = transforms.AmplitudeToDB('power', top_db)
PCerles's avatar
PCerles committed
136

137
138
        waveform = self.waveform.clone()  # (1, 16000)
        waveform_scaled = self.scale(waveform)  # (1, 16000)
139
        mel_transform = transforms.MelSpectrogram()
140
        # check defaults
141
        spectrogram_torch = s2db(mel_transform(waveform_scaled))  # (1, 128, 321)
142
        self.assertTrue(spectrogram_torch.dim() == 3)
PCerles's avatar
PCerles committed
143
        self.assertTrue(spectrogram_torch.ge(spectrogram_torch.max() - top_db).all())
144
        self.assertEqual(spectrogram_torch.size(1), mel_transform.n_mels)
145
        # check correctness of filterbank conversion matrix
146
147
        self.assertTrue(mel_transform.mel_scale.fb.sum(1).le(1.).all())
        self.assertTrue(mel_transform.mel_scale.fb.sum(1).ge(0.).all())
148
        # check options
149
150
        kwargs = {'window_fn': torch.hamming_window, 'pad': 10, 'win_length': 500,
                  'hop_length': 125, 'n_fft': 800, 'n_mels': 50}
151
        mel_transform2 = transforms.MelSpectrogram(**kwargs)
152
        spectrogram2_torch = s2db(mel_transform2(waveform_scaled))  # (1, 50, 513)
153
        self.assertTrue(spectrogram2_torch.dim() == 3)
PCerles's avatar
PCerles committed
154
        self.assertTrue(spectrogram_torch.ge(spectrogram_torch.max() - top_db).all())
155
156
157
        self.assertEqual(spectrogram2_torch.size(1), mel_transform2.n_mels)
        self.assertTrue(mel_transform2.mel_scale.fb.sum(1).le(1.).all())
        self.assertTrue(mel_transform2.mel_scale.fb.sum(1).ge(0.).all())
158
        # check on multi-channel audio
159
160
        x_stereo, sr_stereo = torchaudio.load(self.test_filepath)  # (2, 278756), 44100
        spectrogram_stereo = s2db(mel_transform(x_stereo))  # (2, 128, 1394)
161
162
        self.assertTrue(spectrogram_stereo.dim() == 3)
        self.assertTrue(spectrogram_stereo.size(0) == 2)
PCerles's avatar
PCerles committed
163
        self.assertTrue(spectrogram_torch.ge(spectrogram_torch.max() - top_db).all())
164
        self.assertEqual(spectrogram_stereo.size(1), mel_transform.n_mels)
165
        # check filterbank matrix creation
166
167
        fb_matrix_transform = transforms.MelScale(
            n_mels=100, sample_rate=16000, f_min=0., f_max=None, n_stft=400)
168
169
170
        self.assertTrue(fb_matrix_transform.fb.sum(1).le(1.).all())
        self.assertTrue(fb_matrix_transform.fb.sum(1).ge(0.).all())
        self.assertEqual(fb_matrix_transform.fb.size(), (400, 100))
Soumith Chintala's avatar
Soumith Chintala committed
171

172
173
174
175
    def test_scriptmodule_MFCC(self):
        tensor = torch.rand((1, 1000))
        _test_script_module(transforms.MFCC, tensor)

PCerles's avatar
PCerles committed
176
    def test_mfcc(self):
177
178
        audio_orig = self.waveform.clone()
        audio_scaled = self.scale(audio_orig)  # (1, 16000)
PCerles's avatar
PCerles committed
179
180
181
182

        sample_rate = 16000
        n_mfcc = 40
        n_mels = 128
183
        mfcc_transform = torchaudio.transforms.MFCC(sample_rate=sample_rate,
PCerles's avatar
PCerles committed
184
185
186
                                                    n_mfcc=n_mfcc,
                                                    norm='ortho')
        # check defaults
187
        torch_mfcc = mfcc_transform(audio_scaled)  # (1, 40, 321)
PCerles's avatar
PCerles committed
188
        self.assertTrue(torch_mfcc.dim() == 3)
189
190
        self.assertTrue(torch_mfcc.shape[1] == n_mfcc)
        self.assertTrue(torch_mfcc.shape[2] == 321)
PCerles's avatar
PCerles committed
191
        # check melkwargs are passed through
192
193
        melkwargs = {'win_length': 200}
        mfcc_transform2 = torchaudio.transforms.MFCC(sample_rate=sample_rate,
PCerles's avatar
PCerles committed
194
195
196
                                                     n_mfcc=n_mfcc,
                                                     norm='ortho',
                                                     melkwargs=melkwargs)
197
198
        torch_mfcc2 = mfcc_transform2(audio_scaled)  # (1, 40, 641)
        self.assertTrue(torch_mfcc2.shape[2] == 641)
PCerles's avatar
PCerles committed
199
200

        # check norms work correctly
201
        mfcc_transform_norm_none = torchaudio.transforms.MFCC(sample_rate=sample_rate,
PCerles's avatar
PCerles committed
202
203
                                                              n_mfcc=n_mfcc,
                                                              norm=None)
204
        torch_mfcc_norm_none = mfcc_transform_norm_none(audio_scaled)  # (1, 40, 321)
PCerles's avatar
PCerles committed
205
206

        norm_check = torch_mfcc.clone()
207
208
        norm_check[:, 0, :] *= math.sqrt(n_mels) * 2
        norm_check[:, 1:, :] *= math.sqrt(n_mels / 2) * 2
PCerles's avatar
PCerles committed
209
210
211

        self.assertTrue(torch_mfcc_norm_none.allclose(norm_check))

212
    @unittest.skipIf(not IMPORT_LIBROSA or not IMPORT_SCIPY, 'Librosa and scipy are not available')
PCerles's avatar
PCerles committed
213
    def test_librosa_consistency(self):
214
215
216
        def _test_librosa_consistency_helper(n_fft, hop_length, power, n_mels, n_mfcc, sample_rate):
            input_path = os.path.join(self.test_dirpath, 'assets', 'sinewave.wav')
            sound, sample_rate = torchaudio.load(input_path)
217
            sound_librosa = sound.cpu().numpy().squeeze()  # (64000)
218
219

            # test core spectrogram
220
            spect_transform = torchaudio.transforms.Spectrogram(n_fft=n_fft, hop_length=hop_length, power=power)
221
222
223
            out_librosa, _ = librosa.core.spectrum._spectrogram(y=sound_librosa,
                                                                n_fft=n_fft,
                                                                hop_length=hop_length,
224
                                                                power=power)
225

226
            out_torch = spect_transform(sound).squeeze().cpu()
227
228
229
            self.assertTrue(torch.allclose(out_torch, torch.from_numpy(out_librosa), atol=1e-5))

            # test mel spectrogram
230
231
232
            melspect_transform = torchaudio.transforms.MelSpectrogram(
                sample_rate=sample_rate, window_fn=torch.hann_window,
                hop_length=hop_length, n_mels=n_mels, n_fft=n_fft)
233
234
235
            librosa_mel = librosa.feature.melspectrogram(y=sound_librosa, sr=sample_rate,
                                                         n_fft=n_fft, hop_length=hop_length, n_mels=n_mels,
                                                         htk=True, norm=None)
jamarshon's avatar
jamarshon committed
236
            librosa_mel_tensor = torch.from_numpy(librosa_mel)
237
            torch_mel = melspect_transform(sound).squeeze().cpu()
238

jamarshon's avatar
jamarshon committed
239
            self.assertTrue(torch.allclose(torch_mel.type(librosa_mel_tensor.dtype), librosa_mel_tensor, atol=5e-3))
240
241

            # test s2db
242
            db_transform = torchaudio.transforms.AmplitudeToDB('power', 80.)
243
            db_torch = db_transform(spect_transform(sound)).squeeze().cpu()
244
245
246
            db_librosa = librosa.core.spectrum.power_to_db(out_librosa)
            self.assertTrue(torch.allclose(db_torch, torch.from_numpy(db_librosa), atol=5e-3))

247
            db_torch = db_transform(melspect_transform(sound)).squeeze().cpu()
248
            db_librosa = librosa.core.spectrum.power_to_db(librosa_mel)
jamarshon's avatar
jamarshon committed
249
            db_librosa_tensor = torch.from_numpy(db_librosa)
250

jamarshon's avatar
jamarshon committed
251
            self.assertTrue(torch.allclose(db_torch.type(db_librosa_tensor.dtype), db_librosa_tensor, atol=5e-3))
252
253

            # test MFCC
254
255
            melkwargs = {'hop_length': hop_length, 'n_fft': n_fft}
            mfcc_transform = torchaudio.transforms.MFCC(sample_rate=sample_rate,
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
                                                        n_mfcc=n_mfcc,
                                                        norm='ortho',
                                                        melkwargs=melkwargs)

            # librosa.feature.mfcc doesn't pass kwargs properly since some of the
            # kwargs for melspectrogram and mfcc are the same. We just follow the
            # function body in https://librosa.github.io/librosa/_modules/librosa/feature/spectral.html#melspectrogram
            # to mirror this function call with correct args:

    #         librosa_mfcc = librosa.feature.mfcc(y=sound_librosa,
    #                                             sr=sample_rate,
    #                                             n_mfcc = n_mfcc,
    #                                             hop_length=hop_length,
    #                                             n_fft=n_fft,
    #                                             htk=True,
    #                                             norm=None,
    #                                             n_mels=n_mels)

            librosa_mfcc = scipy.fftpack.dct(db_librosa, axis=0, type=2, norm='ortho')[:n_mfcc]
jamarshon's avatar
jamarshon committed
275
            librosa_mfcc_tensor = torch.from_numpy(librosa_mfcc)
276
            torch_mfcc = mfcc_transform(sound).squeeze().cpu()
277

jamarshon's avatar
jamarshon committed
278
            self.assertTrue(torch.allclose(torch_mfcc.type(librosa_mfcc_tensor.dtype), librosa_mfcc_tensor, atol=5e-3))
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

        kwargs1 = {
            'n_fft': 400,
            'hop_length': 200,
            'power': 2.0,
            'n_mels': 128,
            'n_mfcc': 40,
            'sample_rate': 16000
        }

        kwargs2 = {
            'n_fft': 600,
            'hop_length': 100,
            'power': 2.0,
            'n_mels': 128,
            'n_mfcc': 20,
            'sample_rate': 16000
        }

        kwargs3 = {
            'n_fft': 200,
            'hop_length': 50,
            'power': 2.0,
            'n_mels': 128,
            'n_mfcc': 50,
            'sample_rate': 24000
        }

307
308
309
310
311
312
313
314
315
        kwargs4 = {
            'n_fft': 400,
            'hop_length': 200,
            'power': 3.0,
            'n_mels': 128,
            'n_mfcc': 40,
            'sample_rate': 16000
        }

316
317
        _test_librosa_consistency_helper(**kwargs1)
        _test_librosa_consistency_helper(**kwargs2)
318
319
320
        # NOTE Test passes offline, but fails on CircleCI, see #372.
        # _test_librosa_consistency_helper(**kwargs3)
        _test_librosa_consistency_helper(**kwargs4)
PCerles's avatar
PCerles committed
321

Oktai Tatanov's avatar
Oktai Tatanov committed
322
323
    def test_scriptmodule_Resample(self):
        tensor = torch.rand((2, 1000))
324
325
        sample_rate = 100.
        sample_rate_2 = 50.
Oktai Tatanov's avatar
Oktai Tatanov committed
326

327
        _test_script_module(transforms.Resample, tensor, sample_rate, sample_rate_2)
Oktai Tatanov's avatar
Oktai Tatanov committed
328

Vincent QB's avatar
Vincent QB committed
329
330
331
332
333
334
335
336
337
338
339
340
    def test_batch_Resample(self):
        waveform = torch.randn(2, 2786)

        # Single then transform then batch
        expected = transforms.Resample()(waveform).repeat(3, 1, 1)

        # Batch then transform
        computed = transforms.Resample()(waveform.repeat(3, 1, 1))

        self.assertTrue(computed.shape == expected.shape, (computed.shape, expected.shape))
        self.assertTrue(torch.allclose(computed, expected))

341
342
343
344
    def test_scriptmodule_ComplexNorm(self):
        tensor = torch.rand((1, 2, 201, 2))
        _test_script_module(transforms.ComplexNorm, tensor)

jamarshon's avatar
jamarshon committed
345
346
    def test_resample_size(self):
        input_path = os.path.join(self.test_dirpath, 'assets', 'sinewave.wav')
347
        waveform, sample_rate = torchaudio.load(input_path)
jamarshon's avatar
jamarshon committed
348
349
350
351
352

        upsample_rate = sample_rate * 2
        downsample_rate = sample_rate // 2
        invalid_resample = torchaudio.transforms.Resample(sample_rate, upsample_rate, resampling_method='foo')

353
        self.assertRaises(ValueError, invalid_resample, waveform)
jamarshon's avatar
jamarshon committed
354
355
356

        upsample_resample = torchaudio.transforms.Resample(
            sample_rate, upsample_rate, resampling_method='sinc_interpolation')
357
        up_sampled = upsample_resample(waveform)
jamarshon's avatar
jamarshon committed
358
359

        # we expect the upsampled signal to have twice as many samples
360
        self.assertTrue(up_sampled.size(-1) == waveform.size(-1) * 2)
jamarshon's avatar
jamarshon committed
361
362
363

        downsample_resample = torchaudio.transforms.Resample(
            sample_rate, downsample_rate, resampling_method='sinc_interpolation')
364
        down_sampled = downsample_resample(waveform)
jamarshon's avatar
jamarshon committed
365
366

        # we expect the downsampled signal to have half as many samples
367
        self.assertTrue(down_sampled.size(-1) == waveform.size(-1) // 2)
PCerles's avatar
PCerles committed
368

Vincent QB's avatar
Vincent QB committed
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
    def test_compute_deltas(self):
        channel = 13
        n_mfcc = channel * 3
        time = 1021
        win_length = 2 * 7 + 1
        specgram = torch.randn(channel, n_mfcc, time)
        transform = transforms.ComputeDeltas(win_length=win_length)
        computed = transform(specgram)
        self.assertTrue(computed.shape == specgram.shape, (computed.shape, specgram.shape))

    def test_compute_deltas_transform_same_as_functional(self, atol=1e-6, rtol=1e-8):
        channel = 13
        n_mfcc = channel * 3
        time = 1021
        win_length = 2 * 7 + 1
        specgram = torch.randn(channel, n_mfcc, time)

        transform = transforms.ComputeDeltas(win_length=win_length)
        computed_transform = transform(specgram)

        computed_functional = F.compute_deltas(specgram, win_length=win_length)
        torch.testing.assert_allclose(computed_functional, computed_transform, atol=atol, rtol=rtol)

    def test_compute_deltas_twochannel(self):
        specgram = torch.tensor([1., 2., 3., 4.]).repeat(1, 2, 1)
        expected = torch.tensor([[[0.5, 1.0, 1.0, 0.5],
                                  [0.5, 1.0, 1.0, 0.5]]])
        transform = transforms.ComputeDeltas()
        computed = transform(specgram)
        self.assertTrue(computed.shape == specgram.shape, (computed.shape, specgram.shape))

Vincent QB's avatar
Vincent QB committed
400
401
402
403
404
405
406
407
408
409
410
411
412
    def test_batch_MelScale(self):
        specgram = torch.randn(2, 31, 2786)

        # Single then transform then batch
        expected = transforms.MelScale()(specgram).repeat(3, 1, 1, 1)

        # Batch then transform
        computed = transforms.MelScale()(specgram.repeat(3, 1, 1, 1))

        # shape = (3, 2, 201, 1394)
        self.assertTrue(computed.shape == expected.shape, (computed.shape, expected.shape))
        self.assertTrue(torch.allclose(computed, expected))

Vincent QB's avatar
Vincent QB committed
413
414
415
416
417
418
419
420
421
422
423
424
425
    def test_batch_compute_deltas(self):
        specgram = torch.randn(2, 31, 2786)

        # Single then transform then batch
        expected = transforms.ComputeDeltas()(specgram).repeat(3, 1, 1, 1)

        # Batch then transform
        computed = transforms.ComputeDeltas()(specgram.repeat(3, 1, 1, 1))

        # shape = (3, 2, 201, 1394)
        self.assertTrue(computed.shape == expected.shape, (computed.shape, expected.shape))
        self.assertTrue(torch.allclose(computed, expected))

426
427
428
429
430
431
432
433
    def test_scriptmodule_MuLawEncoding(self):
        tensor = torch.rand((1, 10))
        _test_script_module(transforms.MuLawEncoding, tensor)

    def test_scriptmodule_MuLawDecoding(self):
        tensor = torch.rand((1, 10))
        _test_script_module(transforms.MuLawDecoding, tensor)

Vincent QB's avatar
Vincent QB committed
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
    def test_batch_mulaw(self):
        waveform, sample_rate = torchaudio.load(self.test_filepath)  # (2, 278756), 44100

        # Single then transform then batch
        waveform_encoded = transforms.MuLawEncoding()(waveform)
        expected = waveform_encoded.unsqueeze(0).repeat(3, 1, 1)

        # Batch then transform
        waveform_batched = waveform.unsqueeze(0).repeat(3, 1, 1)
        computed = transforms.MuLawEncoding()(waveform_batched)

        # shape = (3, 2, 201, 1394)
        self.assertTrue(computed.shape == expected.shape, (computed.shape, expected.shape))
        self.assertTrue(torch.allclose(computed, expected))

        # Single then transform then batch
        waveform_decoded = transforms.MuLawDecoding()(waveform_encoded)
        expected = waveform_decoded.unsqueeze(0).repeat(3, 1, 1)

        # Batch then transform
        computed = transforms.MuLawDecoding()(computed)

        # shape = (3, 2, 201, 1394)
        self.assertTrue(computed.shape == expected.shape, (computed.shape, expected.shape))
        self.assertTrue(torch.allclose(computed, expected))

460
461
462
463
464
465
466
467
468
469
470
471
    def test_batch_spectrogram(self):
        waveform, sample_rate = torchaudio.load(self.test_filepath)

        # Single then transform then batch
        expected = transforms.Spectrogram()(waveform).repeat(3, 1, 1, 1)

        # Batch then transform
        computed = transforms.Spectrogram()(waveform.repeat(3, 1, 1))

        self.assertTrue(computed.shape == expected.shape, (computed.shape, expected.shape))
        self.assertTrue(torch.allclose(computed, expected))

Vincent QB's avatar
Vincent QB committed
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
    def test_batch_melspectrogram(self):
        waveform, sample_rate = torchaudio.load(self.test_filepath)

        # Single then transform then batch
        expected = transforms.MelSpectrogram()(waveform).repeat(3, 1, 1, 1)

        # Batch then transform
        computed = transforms.MelSpectrogram()(waveform.repeat(3, 1, 1))

        self.assertTrue(computed.shape == expected.shape, (computed.shape, expected.shape))
        self.assertTrue(torch.allclose(computed, expected))

    def test_batch_mfcc(self):
        waveform, sample_rate = torchaudio.load(self.test_filepath)

        # Single then transform then batch
        expected = transforms.MFCC()(waveform).repeat(3, 1, 1, 1)

        # Batch then transform
        computed = transforms.MFCC()(waveform.repeat(3, 1, 1))

        self.assertTrue(computed.shape == expected.shape, (computed.shape, expected.shape))
        self.assertTrue(torch.allclose(computed, expected, atol=1e-5))

496
497
498
499
500
    def test_scriptmodule_TimeStretch(self):
        n_freq = 400
        hop_length = 512
        fixed_rate = 1.3
        tensor = torch.rand((10, 2, n_freq, 10, 2))
501
        _test_script_module(transforms.TimeStretch, tensor, n_freq=n_freq, hop_length=hop_length, fixed_rate=fixed_rate)
502
503
504

    def test_scriptmodule_FrequencyMasking(self):
        tensor = torch.rand((10, 2, 50, 10, 2))
505
        _test_script_module(transforms.FrequencyMasking, tensor, freq_mask_param=60, iid_masks=False)
506
507
508

    def test_scriptmodule_TimeMasking(self):
        tensor = torch.rand((10, 2, 50, 10, 2))
509
        _test_script_module(transforms.TimeMasking, tensor, time_mask_param=30, iid_masks=False)
510

Vincent QB's avatar
Vincent QB committed
511

David Pollack's avatar
David Pollack committed
512
513
if __name__ == '__main__':
    unittest.main()