README.md 7.81 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
[pypi-image]: https://badge.fury.io/py/torch-spline-conv.svg
[pypi-url]: https://pypi.python.org/pypi/torch-spline-conv
3
4
5
6
[testing-image]: https://github.com/rusty1s/pytorch_spline_conv/actions/workflows/testing.yml/badge.svg
[testing-url]: https://github.com/rusty1s/pytorch_spline_conv/actions/workflows/testing.yml
[linting-image]: https://github.com/rusty1s/pytorch_spline_conv/actions/workflows/linting.yml/badge.svg
[linting-url]: https://github.com/rusty1s/pytorch_spline_conv/actions/workflows/linting.yml
rusty1s's avatar
rusty1s committed
7
8
9
[coverage-image]: https://codecov.io/gh/rusty1s/pytorch_spline_conv/branch/master/graph/badge.svg
[coverage-url]: https://codecov.io/github/rusty1s/pytorch_spline_conv?branch=master

rusty1s's avatar
typos  
rusty1s committed
10
# Spline-Based Convolution Operator of SplineCNN
rusty1s's avatar
rusty1s committed
11
12

[![PyPI Version][pypi-image]][pypi-url]
13
14
[![Testing Status][testing-image]][testing-url]
[![Linting Status][linting-image]][linting-url]
rusty1s's avatar
rusty1s committed
15
16
17
[![Code Coverage][coverage-image]][coverage-url]

--------------------------------------------------------------------------------
rusty1s's avatar
rusty1s committed
18

rusty1s's avatar
bugfix  
rusty1s committed
19
20
21
22
This is a PyTorch implementation of the spline-based convolution operator of SplineCNN, as described in our paper:

Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich Müller: [SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels](https://arxiv.org/abs/1711.08920) (CVPR 2018)

rusty1s's avatar
typos  
rusty1s committed
23
The operator works on all floating point data types and is implemented both for CPU and GPU.
rusty1s's avatar
bugfix  
rusty1s committed
24
25
26

## Installation

rusty1s's avatar
rusty1s committed
27
28
### Anaconda

rusty1s's avatar
rusty1s committed
29
**Update:** You can now install `pytorch-spline-conv` via [Anaconda](https://anaconda.org/pyg/pytorch-spline-conv) for all major OS/PyTorch/CUDA combinations 🤗
rusty1s's avatar
rusty1s committed
30
31
32
Given that you have [`pytorch >= 1.8.0` installed](https://pytorch.org/get-started/locally/), simply run

```
rusty1s's avatar
rusty1s committed
33
conda install pytorch-spline-conv -c pyg
rusty1s's avatar
rusty1s committed
34
35
```

rusty1s's avatar
rusty1s committed
36
37
### Binaries

rusty1s's avatar
rusty1s committed
38
We alternatively provide pip wheels for all major OS/PyTorch/CUDA combinations, see [here](https://data.pyg.org/whl).
rusty1s's avatar
rusty1s committed
39

rusty1s's avatar
rusty1s committed
40
#### PyTorch 1.12
rusty1s's avatar
rusty1s committed
41

rusty1s's avatar
rusty1s committed
42
To install the binaries for PyTorch 1.12.0, simply run
rusty1s's avatar
rusty1s committed
43
44

```
rusty1s's avatar
rusty1s committed
45
pip install torch-spline-conv -f https://data.pyg.org/whl/torch-1.12.0+${CUDA}.html
rusty1s's avatar
rusty1s committed
46
47
```

rusty1s's avatar
rusty1s committed
48
where `${CUDA}` should be replaced by either `cpu`, `cu102`, `cu113`, or `cu116` depending on your PyTorch installation.
rusty1s's avatar
rusty1s committed
49

rusty1s's avatar
rusty1s committed
50
|             | `cpu` | `cu102` | `cu113` | `cu116` |
rusty1s's avatar
rusty1s committed
51
52
53
54
|-------------|-------|---------|---------|---------|
| **Linux**   | ✅    | ✅      | ✅      | ✅      |
| **Windows** | ✅    |         | ✅      | ✅      |
| **macOS**   | ✅    |         |         |         |
rusty1s's avatar
rusty1s committed
55

rusty1s's avatar
rusty1s committed
56

rusty1s's avatar
rusty1s committed
57
58
59
#### PyTorch 1.11

To install the binaries for PyTorch 1.11.0, simply run
rusty1s's avatar
rusty1s committed
60
61

```
rusty1s's avatar
rusty1s committed
62
pip install torch-spline-conv -f https://data.pyg.org/whl/torch-1.11.0+${CUDA}.html
rusty1s's avatar
rusty1s committed
63
64
```

rusty1s's avatar
rusty1s committed
65
where `${CUDA}` should be replaced by either `cpu`, `cu102`, `cu113`, or `cu115` depending on your PyTorch installation.
rusty1s's avatar
rusty1s committed
66

rusty1s's avatar
rusty1s committed
67
|             | `cpu` | `cu102` | `cu113` | `cu115` |
rusty1s's avatar
rusty1s committed
68
69
|-------------|-------|---------|---------|---------|
| **Linux**   | ✅    | ✅      | ✅      | ✅      |
rusty1s's avatar
rusty1s committed
70
| **Windows** | ✅    |         | ✅      | ✅      |
rusty1s's avatar
rusty1s committed
71
| **macOS**   | ✅    |         |         |         |
rusty1s's avatar
rusty1s committed
72

rusty1s's avatar
rusty1s committed
73
**Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1, PyTorch 1.9.0, and PyTorch 1.10.0/1.10.1/1.10.2 (following the same procedure).
rusty1s's avatar
rusty1s committed
74
75
For older versions, you might need to explicitly specify the latest supported version number in order to prevent a manual installation from source.
You can look up the latest supported version number [here](https://data.pyg.org/whl).
rusty1s's avatar
rusty1s committed
76
77
78
79

### From source

Ensure that at least PyTorch 1.4.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*:
rusty1s's avatar
rusty1s committed
80
81
82

```
$ python -c "import torch; print(torch.__version__)"
rusty1s's avatar
rusty1s committed
83
>>> 1.4.0
rusty1s's avatar
rusty1s committed
84
85
86
87
88

$ echo $PATH
>>> /usr/local/cuda/bin:...

$ echo $CPATH
rusty1s's avatar
rusty1s committed
89
>>> /usr/local/cuda/include:...
rusty1s's avatar
rusty1s committed
90
91
```

rusty1s's avatar
bugfix  
rusty1s committed
92
93
94
Then run:

```
rusty1s's avatar
rusty1s committed
95
pip install torch-spline-conv
rusty1s's avatar
bugfix  
rusty1s committed
96
97
```

rusty1s's avatar
rusty1s committed
98
99
100
101
102
103
When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail.
In this case, ensure that the compute capabilities are set via `TORCH_CUDA_ARCH_LIST`, *e.g.*:

```
export TORCH_CUDA_ARCH_LIST = "6.0 6.1 7.2+PTX 7.5+PTX"
```
rusty1s's avatar
rusty1s committed
104

rusty1s's avatar
bugfix  
rusty1s committed
105
106
107
## Usage

```python
rusty1s's avatar
rusty1s committed
108
109
110
111
112
113
114
115
116
117
118
119
from torch_spline_conv import spline_conv

out = spline_conv(x,
                  edge_index,
                  pseudo,
                  weight,
                  kernel_size,
                  is_open_spline,
                  degree=1,
                  norm=True,
                  root_weight=None,
                  bias=None)
rusty1s's avatar
bugfix  
rusty1s committed
120
121
```

rusty1s's avatar
typo  
rusty1s committed
122
Applies the spline-based convolution operator
rusty1s's avatar
rusty1s committed
123
<p align="center">
Matthias Fey's avatar
Matthias Fey committed
124
  <img width="50%" src="https://user-images.githubusercontent.com/6945922/38684093-36d9c52e-3e6f-11e8-9021-db054223c6b9.png" />
rusty1s's avatar
rusty1s committed
125
</p>
rusty1s's avatar
bugfix  
rusty1s committed
126
over several node features of an input graph.
rusty1s's avatar
typo  
rusty1s committed
127
The kernel function is defined over the weighted B-spline tensor product basis, as shown below for different B-spline degrees.
rusty1s's avatar
bugfix  
rusty1s committed
128

Matthias Fey's avatar
Matthias Fey committed
129
130
131
132
133
<p align="center">
  <img width="45%" src="https://user-images.githubusercontent.com/6945922/38685443-3a2a0c68-3e72-11e8-8e13-9ce9ad8fe43e.png" />
  <img width="45%" src="https://user-images.githubusercontent.com/6945922/38685459-42b2bcae-3e72-11e8-88cc-4b61e41dbd93.png" />
</p>

rusty1s's avatar
bugfix  
rusty1s committed
134
135
### Parameters

rusty1s's avatar
rusty1s committed
136
* **x** *(Tensor)* - Input node features of shape `(number_of_nodes x in_channels)`.
rusty1s's avatar
rusty1s committed
137
138
139
140
141
* **edge_index** *(LongTensor)* - Graph edges, given by source and target indices, of shape `(2 x number_of_edges)`.
* **pseudo** *(Tensor)* - Edge attributes, ie. pseudo coordinates, of shape `(number_of_edges x number_of_edge_attributes)` in the fixed interval [0, 1].
* **weight** *(Tensor)* - Trainable weight parameters of shape `(kernel_size x in_channels x out_channels)`.
* **kernel_size** *(LongTensor)* - Number of trainable weight parameters in each edge dimension.
* **is_open_spline** *(ByteTensor)* - Whether to use open or closed B-spline bases for each dimension.
rusty1s's avatar
rusty1s committed
142
* **degree** *(int, optional)* - B-spline basis degree. (default: `1`)
rusty1s's avatar
rusty1s committed
143
* **norm** *(bool, optional)*: Whether to normalize output by node degree. (default: `True`)
rusty1s's avatar
rusty1s committed
144
145
* **root_weight** *(Tensor, optional)* - Additional shared trainable parameters for each feature of the root node of shape `(in_channels x out_channels)`. (default: `None`)
* **bias** *(Tensor, optional)* - Optional bias of shape `(out_channels)`. (default: `None`)
rusty1s's avatar
return  
rusty1s committed
146
147
148

### Returns

Matthias Fey's avatar
Matthias Fey committed
149
* **out** *(Tensor)* - Out node features of shape `(number_of_nodes x out_channels)`.
rusty1s's avatar
bugfix  
rusty1s committed
150
151
152
153
154

### Example

```python
import torch
rusty1s's avatar
rusty1s committed
155
from torch_spline_conv import spline_conv
rusty1s's avatar
bugfix  
rusty1s committed
156

rusty1s's avatar
rusty1s committed
157
x = torch.rand((4, 2), dtype=torch.float)  # 4 nodes with 2 features each
rusty1s's avatar
rusty1s committed
158
159
edge_index = torch.tensor([[0, 1, 1, 2, 2, 3], [1, 0, 2, 1, 3, 2]])  # 6 edges
pseudo = torch.rand((6, 2), dtype=torch.float)  # two-dimensional edge attributes
rusty1s's avatar
typo  
rusty1s committed
160
161
weight = torch.rand((25, 2, 4), dtype=torch.float)  # 25 parameters for in_channels x out_channels
kernel_size = torch.tensor([5, 5])  # 5 parameters in each edge dimension
rusty1s's avatar
rusty1s committed
162
is_open_spline = torch.tensor([1, 1], dtype=torch.uint8)  # only use open B-splines
rusty1s's avatar
rusty1s committed
163
degree = 1  # B-spline degree of 1
rusty1s's avatar
rusty1s committed
164
norm = True  # Normalize output by node degree.
rusty1s's avatar
rusty1s committed
165
root_weight = torch.rand((2, 4), dtype=torch.float)  # separately weight root nodes
rusty1s's avatar
typo  
rusty1s committed
166
bias = None  # do not apply an additional bias
rusty1s's avatar
bugfix  
rusty1s committed
167

rusty1s's avatar
rusty1s committed
168
169
out = spline_conv(x, edge_index, pseudo, weight, kernel_size,
                  is_open_spline, degree, norm, root_weight, bias)
rusty1s's avatar
bugfix  
rusty1s committed
170

rusty1s's avatar
rename  
rusty1s committed
171
print(out.size())
rusty1s's avatar
typo  
rusty1s committed
172
torch.Size([4, 4])  # 4 nodes with 4 features each
rusty1s's avatar
bugfix  
rusty1s committed
173
174
```

rusty1s's avatar
rusty1s committed
175
176
177
178
179
180
181
182
## Cite

Please cite our paper if you use this code in your own work:

```
@inproceedings{Fey/etal/2018,
  title={{SplineCNN}: Fast Geometric Deep Learning with Continuous {B}-Spline Kernels},
  author={Fey, Matthias and Lenssen, Jan Eric and Weichert, Frank and M{\"u}ller, Heinrich},
Matthias Fey's avatar
Matthias Fey committed
183
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
rusty1s's avatar
rusty1s committed
184
185
186
  year={2018},
}
```
rusty1s's avatar
typos  
rusty1s committed
187
188
189
190

## Running tests

```
rusty1s's avatar
rusty1s committed
191
pytest
rusty1s's avatar
typos  
rusty1s committed
192
```
rusty1s's avatar
rusty1s committed
193
194
195
196
197
198
199
200
201
202
203
204
205

## C++ API

`torch-spline-conv` also offers a C++ API that contains C++ equivalent of python models.

```
mkdir build
cd build
# Add -DWITH_CUDA=on support for the CUDA if needed
cmake ..
make
make install
```