README.md 7.18 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
[pypi-image]: https://badge.fury.io/py/torch-spline-conv.svg
[pypi-url]: https://pypi.python.org/pypi/torch-spline-conv
3
4
5
6
[testing-image]: https://github.com/rusty1s/pytorch_spline_conv/actions/workflows/testing.yml/badge.svg
[testing-url]: https://github.com/rusty1s/pytorch_spline_conv/actions/workflows/testing.yml
[linting-image]: https://github.com/rusty1s/pytorch_spline_conv/actions/workflows/linting.yml/badge.svg
[linting-url]: https://github.com/rusty1s/pytorch_spline_conv/actions/workflows/linting.yml
rusty1s's avatar
rusty1s committed
7
8
9
[coverage-image]: https://codecov.io/gh/rusty1s/pytorch_spline_conv/branch/master/graph/badge.svg
[coverage-url]: https://codecov.io/github/rusty1s/pytorch_spline_conv?branch=master

rusty1s's avatar
typos  
rusty1s committed
10
# Spline-Based Convolution Operator of SplineCNN
rusty1s's avatar
rusty1s committed
11
12

[![PyPI Version][pypi-image]][pypi-url]
13
14
[![Testing Status][testing-image]][testing-url]
[![Linting Status][linting-image]][linting-url]
rusty1s's avatar
rusty1s committed
15
16
17
[![Code Coverage][coverage-image]][coverage-url]

--------------------------------------------------------------------------------
rusty1s's avatar
rusty1s committed
18

rusty1s's avatar
bugfix  
rusty1s committed
19
20
21
22
This is a PyTorch implementation of the spline-based convolution operator of SplineCNN, as described in our paper:

Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich Müller: [SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels](https://arxiv.org/abs/1711.08920) (CVPR 2018)

rusty1s's avatar
typos  
rusty1s committed
23
The operator works on all floating point data types and is implemented both for CPU and GPU.
rusty1s's avatar
bugfix  
rusty1s committed
24
25
26

## Installation

rusty1s's avatar
rusty1s committed
27
28
29
### Binaries

We provide pip wheels for all major OS/PyTorch/CUDA combinations, see [here](https://pytorch-geometric.com/whl).
rusty1s's avatar
rusty1s committed
30

31
#### PyTorch 1.9.0
rusty1s's avatar
rusty1s committed
32

33
To install the binaries for PyTorch 1.9.0, simply run
rusty1s's avatar
rusty1s committed
34
35

```
36
pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.9.0+${CUDA}.html
rusty1s's avatar
rusty1s committed
37
38
```

39
where `${CUDA}` should be replaced by either `cpu`, `cu102`, or `cu111` depending on your PyTorch installation.
rusty1s's avatar
rusty1s committed
40

41
42
43
44
45
|             | `cpu` | `cu102` | `cu111` |
|-------------|-------|---------|---------|
| **Linux**   | ✅    | ✅      | ✅      |
| **Windows** | ✅    | ✅      | ✅      |
| **macOS**   | ✅    |         |         |
rusty1s's avatar
rusty1s committed
46

47
#### PyTorch 1.8.0/1.8.1
rusty1s's avatar
rusty1s committed
48

49
To install the binaries for PyTorch 1.8.0 and 1.8.1, simply run
rusty1s's avatar
rusty1s committed
50
51

```
52
pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.8.0+${CUDA}.html
rusty1s's avatar
rusty1s committed
53
54
```

55
where `${CUDA}` should be replaced by either `cpu`, `cu101`, `cu102`, or `cu111` depending on your PyTorch installation.
rusty1s's avatar
rusty1s committed
56

57
58
59
60
61
|             | `cpu` | `cu101` | `cu102` | `cu111` |
|-------------|-------|---------|---------|---------|
| **Linux**   | ✅    | ✅      | ✅      | ✅      |
| **Windows** | ✅    | ❌      | ✅      | ✅      |
| **macOS**   | ✅    |         |         |         |
rusty1s's avatar
rusty1s committed
62

63
**Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0 and PyTorch 1.7.0/1.7.1 (following the same procedure).
rusty1s's avatar
rusty1s committed
64
65
66
67

### From source

Ensure that at least PyTorch 1.4.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*:
rusty1s's avatar
rusty1s committed
68
69
70

```
$ python -c "import torch; print(torch.__version__)"
rusty1s's avatar
rusty1s committed
71
>>> 1.4.0
rusty1s's avatar
rusty1s committed
72
73
74
75
76

$ echo $PATH
>>> /usr/local/cuda/bin:...

$ echo $CPATH
rusty1s's avatar
rusty1s committed
77
>>> /usr/local/cuda/include:...
rusty1s's avatar
rusty1s committed
78
79
```

rusty1s's avatar
bugfix  
rusty1s committed
80
81
82
Then run:

```
rusty1s's avatar
rusty1s committed
83
pip install torch-spline-conv
rusty1s's avatar
bugfix  
rusty1s committed
84
85
```

rusty1s's avatar
rusty1s committed
86
87
88
89
90
91
When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail.
In this case, ensure that the compute capabilities are set via `TORCH_CUDA_ARCH_LIST`, *e.g.*:

```
export TORCH_CUDA_ARCH_LIST = "6.0 6.1 7.2+PTX 7.5+PTX"
```
rusty1s's avatar
rusty1s committed
92

rusty1s's avatar
bugfix  
rusty1s committed
93
94
95
## Usage

```python
rusty1s's avatar
rusty1s committed
96
97
98
99
100
101
102
103
104
105
106
107
from torch_spline_conv import spline_conv

out = spline_conv(x,
                  edge_index,
                  pseudo,
                  weight,
                  kernel_size,
                  is_open_spline,
                  degree=1,
                  norm=True,
                  root_weight=None,
                  bias=None)
rusty1s's avatar
bugfix  
rusty1s committed
108
109
```

rusty1s's avatar
typo  
rusty1s committed
110
Applies the spline-based convolution operator
rusty1s's avatar
rusty1s committed
111
<p align="center">
Matthias Fey's avatar
Matthias Fey committed
112
  <img width="50%" src="https://user-images.githubusercontent.com/6945922/38684093-36d9c52e-3e6f-11e8-9021-db054223c6b9.png" />
rusty1s's avatar
rusty1s committed
113
</p>
rusty1s's avatar
bugfix  
rusty1s committed
114
over several node features of an input graph.
rusty1s's avatar
typo  
rusty1s committed
115
The kernel function is defined over the weighted B-spline tensor product basis, as shown below for different B-spline degrees.
rusty1s's avatar
bugfix  
rusty1s committed
116

Matthias Fey's avatar
Matthias Fey committed
117
118
119
120
121
<p align="center">
  <img width="45%" src="https://user-images.githubusercontent.com/6945922/38685443-3a2a0c68-3e72-11e8-8e13-9ce9ad8fe43e.png" />
  <img width="45%" src="https://user-images.githubusercontent.com/6945922/38685459-42b2bcae-3e72-11e8-88cc-4b61e41dbd93.png" />
</p>

rusty1s's avatar
bugfix  
rusty1s committed
122
123
### Parameters

rusty1s's avatar
rusty1s committed
124
* **x** *(Tensor)* - Input node features of shape `(number_of_nodes x in_channels)`.
rusty1s's avatar
rusty1s committed
125
126
127
128
129
* **edge_index** *(LongTensor)* - Graph edges, given by source and target indices, of shape `(2 x number_of_edges)`.
* **pseudo** *(Tensor)* - Edge attributes, ie. pseudo coordinates, of shape `(number_of_edges x number_of_edge_attributes)` in the fixed interval [0, 1].
* **weight** *(Tensor)* - Trainable weight parameters of shape `(kernel_size x in_channels x out_channels)`.
* **kernel_size** *(LongTensor)* - Number of trainable weight parameters in each edge dimension.
* **is_open_spline** *(ByteTensor)* - Whether to use open or closed B-spline bases for each dimension.
rusty1s's avatar
rusty1s committed
130
* **degree** *(int, optional)* - B-spline basis degree. (default: `1`)
rusty1s's avatar
rusty1s committed
131
* **norm** *(bool, optional)*: Whether to normalize output by node degree. (default: `True`)
rusty1s's avatar
rusty1s committed
132
133
* **root_weight** *(Tensor, optional)* - Additional shared trainable parameters for each feature of the root node of shape `(in_channels x out_channels)`. (default: `None`)
* **bias** *(Tensor, optional)* - Optional bias of shape `(out_channels)`. (default: `None`)
rusty1s's avatar
return  
rusty1s committed
134
135
136

### Returns

Matthias Fey's avatar
Matthias Fey committed
137
* **out** *(Tensor)* - Out node features of shape `(number_of_nodes x out_channels)`.
rusty1s's avatar
bugfix  
rusty1s committed
138
139
140
141
142

### Example

```python
import torch
rusty1s's avatar
rusty1s committed
143
from torch_spline_conv import spline_conv
rusty1s's avatar
bugfix  
rusty1s committed
144

rusty1s's avatar
rusty1s committed
145
x = torch.rand((4, 2), dtype=torch.float)  # 4 nodes with 2 features each
rusty1s's avatar
rusty1s committed
146
147
edge_index = torch.tensor([[0, 1, 1, 2, 2, 3], [1, 0, 2, 1, 3, 2]])  # 6 edges
pseudo = torch.rand((6, 2), dtype=torch.float)  # two-dimensional edge attributes
rusty1s's avatar
typo  
rusty1s committed
148
149
weight = torch.rand((25, 2, 4), dtype=torch.float)  # 25 parameters for in_channels x out_channels
kernel_size = torch.tensor([5, 5])  # 5 parameters in each edge dimension
rusty1s's avatar
rusty1s committed
150
is_open_spline = torch.tensor([1, 1], dtype=torch.uint8)  # only use open B-splines
rusty1s's avatar
rusty1s committed
151
degree = 1  # B-spline degree of 1
rusty1s's avatar
rusty1s committed
152
norm = True  # Normalize output by node degree.
rusty1s's avatar
rusty1s committed
153
root_weight = torch.rand((2, 4), dtype=torch.float)  # separately weight root nodes
rusty1s's avatar
typo  
rusty1s committed
154
bias = None  # do not apply an additional bias
rusty1s's avatar
bugfix  
rusty1s committed
155

rusty1s's avatar
rusty1s committed
156
157
out = spline_conv(x, edge_index, pseudo, weight, kernel_size,
                  is_open_spline, degree, norm, root_weight, bias)
rusty1s's avatar
bugfix  
rusty1s committed
158

rusty1s's avatar
rename  
rusty1s committed
159
print(out.size())
rusty1s's avatar
typo  
rusty1s committed
160
torch.Size([4, 4])  # 4 nodes with 4 features each
rusty1s's avatar
bugfix  
rusty1s committed
161
162
```

rusty1s's avatar
rusty1s committed
163
164
165
166
167
168
169
170
## Cite

Please cite our paper if you use this code in your own work:

```
@inproceedings{Fey/etal/2018,
  title={{SplineCNN}: Fast Geometric Deep Learning with Continuous {B}-Spline Kernels},
  author={Fey, Matthias and Lenssen, Jan Eric and Weichert, Frank and M{\"u}ller, Heinrich},
Matthias Fey's avatar
Matthias Fey committed
171
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
rusty1s's avatar
rusty1s committed
172
173
174
  year={2018},
}
```
rusty1s's avatar
typos  
rusty1s committed
175
176
177
178
179
180

## Running tests

```
python setup.py test
```
rusty1s's avatar
rusty1s committed
181
182
183
184
185
186
187
188
189
190
191
192
193

## C++ API

`torch-spline-conv` also offers a C++ API that contains C++ equivalent of python models.

```
mkdir build
cd build
# Add -DWITH_CUDA=on support for the CUDA if needed
cmake ..
make
make install
```