"docs/vscode:/vscode.git/clone" did not exist on "fc14cca0886e7ac7d1cc1b5ed75b3d7565212161"
README.md 5.2 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
[pypi-image]: https://badge.fury.io/py/torch-spline-conv.svg
[pypi-url]: https://pypi.python.org/pypi/torch-spline-conv
[build-image]: https://travis-ci.org/rusty1s/pytorch_spline_conv.svg?branch=master
[build-url]: https://travis-ci.org/rusty1s/pytorch_spline_conv
[coverage-image]: https://codecov.io/gh/rusty1s/pytorch_spline_conv/branch/master/graph/badge.svg
[coverage-url]: https://codecov.io/github/rusty1s/pytorch_spline_conv?branch=master

rusty1s's avatar
typos  
rusty1s committed
8
# Spline-Based Convolution Operator of SplineCNN
rusty1s's avatar
rusty1s committed
9
10
11
12
13
14

[![PyPI Version][pypi-image]][pypi-url]
[![Build Status][build-image]][build-url]
[![Code Coverage][coverage-image]][coverage-url]

--------------------------------------------------------------------------------
rusty1s's avatar
rusty1s committed
15

rusty1s's avatar
bugfix  
rusty1s committed
16
17
18
19
This is a PyTorch implementation of the spline-based convolution operator of SplineCNN, as described in our paper:

Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich Müller: [SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels](https://arxiv.org/abs/1711.08920) (CVPR 2018)

rusty1s's avatar
typos  
rusty1s committed
20
The operator works on all floating point data types and is implemented both for CPU and GPU.
rusty1s's avatar
bugfix  
rusty1s committed
21
22
23

## Installation

rusty1s's avatar
rusty1s committed
24
25
26
27
28
29
30
31
32
33
34
35
36
Ensure that at least PyTorch 0.4.1 is installed and verify that `cuda/bin` and `cuda/install` are in your `$PATH` and `$CPATH` respectively, *e.g.*:

```
$ python -c "import torch; print(torch.__version__)"
>>> 0.4.1

$ echo $PATH
>>> /usr/local/cuda/bin:...

$ echo $CPATH
>>> /usr/local/cuda/install:...
```

rusty1s's avatar
bugfix  
rusty1s committed
37
38
39
Then run:

```
rusty1s's avatar
rusty1s committed
40
pip install torch-spline-conv
rusty1s's avatar
bugfix  
rusty1s committed
41
42
```

rusty1s's avatar
rusty1s committed
43
44
If you are running into any installation problems, please create an [issue](https://github.com/rusty1s/pytorch_spline_conv/issues).

rusty1s's avatar
bugfix  
rusty1s committed
45
46
47
## Usage

```python
rusty1s's avatar
rusty1s committed
48
from torch_spline_conv import SplineConv
rusty1s's avatar
bugfix  
rusty1s committed
49

rusty1s's avatar
rusty1s committed
50
out = SplineConv.apply(x,
rusty1s's avatar
typo  
rusty1s committed
51
52
53
54
55
56
                       edge_index,
                       pseudo,
                       weight,
                       kernel_size,
                       is_open_spline,
                       degree=1,
rusty1s's avatar
rusty1s committed
57
                       norm=True,
rusty1s's avatar
typo  
rusty1s committed
58
59
                       root_weight=None,
                       bias=None)
rusty1s's avatar
bugfix  
rusty1s committed
60
61
```

rusty1s's avatar
typo  
rusty1s committed
62
Applies the spline-based convolution operator
rusty1s's avatar
rusty1s committed
63
<p align="center">
Matthias Fey's avatar
Matthias Fey committed
64
  <img width="50%" src="https://user-images.githubusercontent.com/6945922/38684093-36d9c52e-3e6f-11e8-9021-db054223c6b9.png" />
rusty1s's avatar
rusty1s committed
65
</p>
rusty1s's avatar
bugfix  
rusty1s committed
66
over several node features of an input graph.
rusty1s's avatar
typo  
rusty1s committed
67
The kernel function is defined over the weighted B-spline tensor product basis, as shown below for different B-spline degrees.
rusty1s's avatar
bugfix  
rusty1s committed
68

Matthias Fey's avatar
Matthias Fey committed
69
70
71
72
73
<p align="center">
  <img width="45%" src="https://user-images.githubusercontent.com/6945922/38685443-3a2a0c68-3e72-11e8-8e13-9ce9ad8fe43e.png" />
  <img width="45%" src="https://user-images.githubusercontent.com/6945922/38685459-42b2bcae-3e72-11e8-88cc-4b61e41dbd93.png" />
</p>

rusty1s's avatar
bugfix  
rusty1s committed
74
75
### Parameters

rusty1s's avatar
rusty1s committed
76
* **x** *(Tensor)* - Input node features of shape `(number_of_nodes x in_channels)`.
rusty1s's avatar
rusty1s committed
77
78
79
80
81
* **edge_index** *(LongTensor)* - Graph edges, given by source and target indices, of shape `(2 x number_of_edges)`.
* **pseudo** *(Tensor)* - Edge attributes, ie. pseudo coordinates, of shape `(number_of_edges x number_of_edge_attributes)` in the fixed interval [0, 1].
* **weight** *(Tensor)* - Trainable weight parameters of shape `(kernel_size x in_channels x out_channels)`.
* **kernel_size** *(LongTensor)* - Number of trainable weight parameters in each edge dimension.
* **is_open_spline** *(ByteTensor)* - Whether to use open or closed B-spline bases for each dimension.
rusty1s's avatar
rusty1s committed
82
* **degree** *(int, optional)* - B-spline basis degree. (default: `1`)
rusty1s's avatar
rusty1s committed
83
* **norm** *(bool, optional)*: Whether to normalize output by node degree. (default: `True`)
rusty1s's avatar
rusty1s committed
84
85
* **root_weight** *(Tensor, optional)* - Additional shared trainable parameters for each feature of the root node of shape `(in_channels x out_channels)`. (default: `None`)
* **bias** *(Tensor, optional)* - Optional bias of shape `(out_channels)`. (default: `None`)
rusty1s's avatar
return  
rusty1s committed
86
87
88

### Returns

rusty1s's avatar
rename  
rusty1s committed
89
* **out** *(Tensor)* - out node features of shape `(number_of_nodes x out_channels)`.
rusty1s's avatar
bugfix  
rusty1s committed
90
91
92
93
94

### Example

```python
import torch
rusty1s's avatar
rusty1s committed
95
from torch_spline_conv import SplineConv
rusty1s's avatar
bugfix  
rusty1s committed
96

rusty1s's avatar
rusty1s committed
97
x = torch.rand((4, 2), dtype=torch.float)  # 4 nodes with 2 features each
rusty1s's avatar
rusty1s committed
98
99
edge_index = torch.tensor([[0, 1, 1, 2, 2, 3], [1, 0, 2, 1, 3, 2]])  # 6 edges
pseudo = torch.rand((6, 2), dtype=torch.float)  # two-dimensional edge attributes
rusty1s's avatar
typo  
rusty1s committed
100
101
weight = torch.rand((25, 2, 4), dtype=torch.float)  # 25 parameters for in_channels x out_channels
kernel_size = torch.tensor([5, 5])  # 5 parameters in each edge dimension
rusty1s's avatar
rusty1s committed
102
is_open_spline = torch.tensor([1, 1], dtype=torch.uint8)  # only use open B-splines
rusty1s's avatar
rusty1s committed
103
degree = 1  # B-spline degree of 1
rusty1s's avatar
rusty1s committed
104
norm = True  # Normalize output by node degree.
rusty1s's avatar
rusty1s committed
105
root_weight = torch.rand((2, 4), dtype=torch.float)  # separately weight root nodes
rusty1s's avatar
typo  
rusty1s committed
106
bias = None  # do not apply an additional bias
rusty1s's avatar
bugfix  
rusty1s committed
107

rusty1s's avatar
rusty1s committed
108
out = SplineConv.apply(x, edge_index, pseudo, weight, kernel_size,
rusty1s's avatar
typo  
rusty1s committed
109
                       is_open_spline, degree, norm, root_weight, bias)
rusty1s's avatar
bugfix  
rusty1s committed
110

rusty1s's avatar
rename  
rusty1s committed
111
print(out.size())
rusty1s's avatar
typo  
rusty1s committed
112
torch.Size([4, 4])  # 4 nodes with 4 features each
rusty1s's avatar
bugfix  
rusty1s committed
113
114
```

rusty1s's avatar
rusty1s committed
115
116
117
118
119
120
121
122
## Cite

Please cite our paper if you use this code in your own work:

```
@inproceedings{Fey/etal/2018,
  title={{SplineCNN}: Fast Geometric Deep Learning with Continuous {B}-Spline Kernels},
  author={Fey, Matthias and Lenssen, Jan Eric and Weichert, Frank and M{\"u}ller, Heinrich},
Matthias Fey's avatar
Matthias Fey committed
123
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
rusty1s's avatar
rusty1s committed
124
125
126
  year={2018},
}
```
rusty1s's avatar
typos  
rusty1s committed
127
128
129
130
131
132

## Running tests

```
python setup.py test
```