README.md 8.32 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
[pypi-image]: https://badge.fury.io/py/torch-spline-conv.svg
[pypi-url]: https://pypi.python.org/pypi/torch-spline-conv
3
4
5
6
[testing-image]: https://github.com/rusty1s/pytorch_spline_conv/actions/workflows/testing.yml/badge.svg
[testing-url]: https://github.com/rusty1s/pytorch_spline_conv/actions/workflows/testing.yml
[linting-image]: https://github.com/rusty1s/pytorch_spline_conv/actions/workflows/linting.yml/badge.svg
[linting-url]: https://github.com/rusty1s/pytorch_spline_conv/actions/workflows/linting.yml
rusty1s's avatar
rusty1s committed
7
8
9
[coverage-image]: https://codecov.io/gh/rusty1s/pytorch_spline_conv/branch/master/graph/badge.svg
[coverage-url]: https://codecov.io/github/rusty1s/pytorch_spline_conv?branch=master

rusty1s's avatar
typos  
rusty1s committed
10
# Spline-Based Convolution Operator of SplineCNN
rusty1s's avatar
rusty1s committed
11
12

[![PyPI Version][pypi-image]][pypi-url]
13
14
[![Testing Status][testing-image]][testing-url]
[![Linting Status][linting-image]][linting-url]
rusty1s's avatar
rusty1s committed
15
16
17
[![Code Coverage][coverage-image]][coverage-url]

--------------------------------------------------------------------------------
rusty1s's avatar
rusty1s committed
18

rusty1s's avatar
bugfix  
rusty1s committed
19
20
21
22
This is a PyTorch implementation of the spline-based convolution operator of SplineCNN, as described in our paper:

Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich Müller: [SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels](https://arxiv.org/abs/1711.08920) (CVPR 2018)

rusty1s's avatar
typos  
rusty1s committed
23
The operator works on all floating point data types and is implemented both for CPU and GPU.
rusty1s's avatar
bugfix  
rusty1s committed
24
25
26

## Installation

rusty1s's avatar
rusty1s committed
27
28
### Anaconda

rusty1s's avatar
rusty1s committed
29
**Update:** You can now install `pytorch-spline-conv` via [Anaconda](https://anaconda.org/pyg/pytorch-spline-conv) for all major OS/PyTorch/CUDA combinations 🤗
rusty1s's avatar
rusty1s committed
30
31
32
Given that you have [`pytorch >= 1.8.0` installed](https://pytorch.org/get-started/locally/), simply run

```
rusty1s's avatar
rusty1s committed
33
conda install pytorch-spline-conv -c pyg
rusty1s's avatar
rusty1s committed
34
35
```

rusty1s's avatar
rusty1s committed
36
37
### Binaries

rusty1s's avatar
rusty1s committed
38
We alternatively provide pip wheels for all major OS/PyTorch/CUDA combinations, see [here](https://data.pyg.org/whl).
rusty1s's avatar
rusty1s committed
39

rusty1s's avatar
update  
rusty1s committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#### PyTorch 2.0

To install the binaries for PyTorch 2.0.0, simply run

```
pip install torch-spline-conv -f https://data.pyg.org/whl/torch-2.0.0+${CUDA}.html
```

where `${CUDA}` should be replaced by either `cpu`, `cu117`, or `cu118` depending on your PyTorch installation.

|             | `cpu` | `cu117` | `cu118` |
|-------------|-------|---------|---------|
| **Linux**   | ✅    | ✅      | ✅      |
| **Windows** | ✅    | ✅      | ✅      |
| **macOS**   | ✅    |         |         |

rusty1s's avatar
update  
rusty1s committed
56
#### PyTorch 1.13
rusty1s's avatar
rusty1s committed
57

rusty1s's avatar
update  
rusty1s committed
58
To install the binaries for PyTorch 1.13.0, simply run
rusty1s's avatar
rusty1s committed
59
60

```
rusty1s's avatar
typo  
rusty1s committed
61
pip install torch-spline-conv -f https://data.pyg.org/whl/torch-1.13.0+${CUDA}.html
rusty1s's avatar
rusty1s committed
62
63
```

rusty1s's avatar
update  
rusty1s committed
64
where `${CUDA}` should be replaced by either `cpu`, `cu116`, or `cu117` depending on your PyTorch installation.
rusty1s's avatar
rusty1s committed
65

rusty1s's avatar
update  
rusty1s committed
66
67
68
69
70
|             | `cpu` | `cu116` | `cu117` |
|-------------|-------|---------|---------|
| **Linux**   | ✅    | ✅      | ✅      |
| **Windows** | ✅    | ✅      | ✅      |
| **macOS**   | ✅    |         |         |
rusty1s's avatar
rusty1s committed
71

rusty1s's avatar
update  
rusty1s committed
72
#### PyTorch 1.12
rusty1s's avatar
rusty1s committed
73

rusty1s's avatar
update  
rusty1s committed
74
To install the binaries for PyTorch 1.12.0, simply run
rusty1s's avatar
rusty1s committed
75
76

```
rusty1s's avatar
update  
rusty1s committed
77
pip install torch-spline-conv -f https://data.pyg.org/whl/torch-1.12.0+${CUDA}.html
rusty1s's avatar
rusty1s committed
78
79
```

rusty1s's avatar
update  
rusty1s committed
80
where `${CUDA}` should be replaced by either `cpu`, `cu102`, `cu113`, or `cu116` depending on your PyTorch installation.
rusty1s's avatar
rusty1s committed
81

rusty1s's avatar
update  
rusty1s committed
82
|             | `cpu` | `cu102` | `cu113` | `cu116` |
rusty1s's avatar
rusty1s committed
83
84
|-------------|-------|---------|---------|---------|
| **Linux**   | ✅    | ✅      | ✅      | ✅      |
rusty1s's avatar
rusty1s committed
85
| **Windows** | ✅    |         | ✅      | ✅      |
rusty1s's avatar
rusty1s committed
86
| **macOS**   | ✅    |         |         |         |
rusty1s's avatar
rusty1s committed
87

rusty1s's avatar
update  
rusty1s committed
88
**Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1, PyTorch 1.9.0, PyTorch 1.10.0/1.10.1/1.10.2, PyTorch 1.11.0, and PyTorch 1.12.0/1.12.1 (following the same procedure).
rusty1s's avatar
update  
rusty1s committed
89
For older versions, you need to explicitly specify the latest supported version number or install via `pip install --no-index` in order to prevent a manual installation from source.
rusty1s's avatar
rusty1s committed
90
You can look up the latest supported version number [here](https://data.pyg.org/whl).
rusty1s's avatar
rusty1s committed
91
92
93
94

### From source

Ensure that at least PyTorch 1.4.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*:
rusty1s's avatar
rusty1s committed
95
96
97

```
$ python -c "import torch; print(torch.__version__)"
rusty1s's avatar
rusty1s committed
98
>>> 1.4.0
rusty1s's avatar
rusty1s committed
99
100
101
102
103

$ echo $PATH
>>> /usr/local/cuda/bin:...

$ echo $CPATH
rusty1s's avatar
rusty1s committed
104
>>> /usr/local/cuda/include:...
rusty1s's avatar
rusty1s committed
105
106
```

rusty1s's avatar
bugfix  
rusty1s committed
107
108
109
Then run:

```
rusty1s's avatar
rusty1s committed
110
pip install torch-spline-conv
rusty1s's avatar
bugfix  
rusty1s committed
111
112
```

rusty1s's avatar
rusty1s committed
113
114
115
116
117
118
When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail.
In this case, ensure that the compute capabilities are set via `TORCH_CUDA_ARCH_LIST`, *e.g.*:

```
export TORCH_CUDA_ARCH_LIST = "6.0 6.1 7.2+PTX 7.5+PTX"
```
rusty1s's avatar
rusty1s committed
119

rusty1s's avatar
bugfix  
rusty1s committed
120
121
122
## Usage

```python
rusty1s's avatar
rusty1s committed
123
124
125
126
127
128
129
130
131
132
133
134
from torch_spline_conv import spline_conv

out = spline_conv(x,
                  edge_index,
                  pseudo,
                  weight,
                  kernel_size,
                  is_open_spline,
                  degree=1,
                  norm=True,
                  root_weight=None,
                  bias=None)
rusty1s's avatar
bugfix  
rusty1s committed
135
136
```

rusty1s's avatar
typo  
rusty1s committed
137
Applies the spline-based convolution operator
rusty1s's avatar
rusty1s committed
138
<p align="center">
Matthias Fey's avatar
Matthias Fey committed
139
  <img width="50%" src="https://user-images.githubusercontent.com/6945922/38684093-36d9c52e-3e6f-11e8-9021-db054223c6b9.png" />
rusty1s's avatar
rusty1s committed
140
</p>
rusty1s's avatar
bugfix  
rusty1s committed
141
over several node features of an input graph.
rusty1s's avatar
typo  
rusty1s committed
142
The kernel function is defined over the weighted B-spline tensor product basis, as shown below for different B-spline degrees.
rusty1s's avatar
bugfix  
rusty1s committed
143

Matthias Fey's avatar
Matthias Fey committed
144
145
146
147
148
<p align="center">
  <img width="45%" src="https://user-images.githubusercontent.com/6945922/38685443-3a2a0c68-3e72-11e8-8e13-9ce9ad8fe43e.png" />
  <img width="45%" src="https://user-images.githubusercontent.com/6945922/38685459-42b2bcae-3e72-11e8-88cc-4b61e41dbd93.png" />
</p>

rusty1s's avatar
bugfix  
rusty1s committed
149
150
### Parameters

rusty1s's avatar
rusty1s committed
151
* **x** *(Tensor)* - Input node features of shape `(number_of_nodes x in_channels)`.
rusty1s's avatar
rusty1s committed
152
153
154
155
156
* **edge_index** *(LongTensor)* - Graph edges, given by source and target indices, of shape `(2 x number_of_edges)`.
* **pseudo** *(Tensor)* - Edge attributes, ie. pseudo coordinates, of shape `(number_of_edges x number_of_edge_attributes)` in the fixed interval [0, 1].
* **weight** *(Tensor)* - Trainable weight parameters of shape `(kernel_size x in_channels x out_channels)`.
* **kernel_size** *(LongTensor)* - Number of trainable weight parameters in each edge dimension.
* **is_open_spline** *(ByteTensor)* - Whether to use open or closed B-spline bases for each dimension.
rusty1s's avatar
rusty1s committed
157
* **degree** *(int, optional)* - B-spline basis degree. (default: `1`)
rusty1s's avatar
rusty1s committed
158
* **norm** *(bool, optional)*: Whether to normalize output by node degree. (default: `True`)
rusty1s's avatar
rusty1s committed
159
160
* **root_weight** *(Tensor, optional)* - Additional shared trainable parameters for each feature of the root node of shape `(in_channels x out_channels)`. (default: `None`)
* **bias** *(Tensor, optional)* - Optional bias of shape `(out_channels)`. (default: `None`)
rusty1s's avatar
return  
rusty1s committed
161
162
163

### Returns

Matthias Fey's avatar
Matthias Fey committed
164
* **out** *(Tensor)* - Out node features of shape `(number_of_nodes x out_channels)`.
rusty1s's avatar
bugfix  
rusty1s committed
165
166
167
168
169

### Example

```python
import torch
rusty1s's avatar
rusty1s committed
170
from torch_spline_conv import spline_conv
rusty1s's avatar
bugfix  
rusty1s committed
171

rusty1s's avatar
rusty1s committed
172
x = torch.rand((4, 2), dtype=torch.float)  # 4 nodes with 2 features each
rusty1s's avatar
rusty1s committed
173
174
edge_index = torch.tensor([[0, 1, 1, 2, 2, 3], [1, 0, 2, 1, 3, 2]])  # 6 edges
pseudo = torch.rand((6, 2), dtype=torch.float)  # two-dimensional edge attributes
rusty1s's avatar
typo  
rusty1s committed
175
176
weight = torch.rand((25, 2, 4), dtype=torch.float)  # 25 parameters for in_channels x out_channels
kernel_size = torch.tensor([5, 5])  # 5 parameters in each edge dimension
rusty1s's avatar
rusty1s committed
177
is_open_spline = torch.tensor([1, 1], dtype=torch.uint8)  # only use open B-splines
rusty1s's avatar
rusty1s committed
178
degree = 1  # B-spline degree of 1
rusty1s's avatar
rusty1s committed
179
norm = True  # Normalize output by node degree.
rusty1s's avatar
rusty1s committed
180
root_weight = torch.rand((2, 4), dtype=torch.float)  # separately weight root nodes
rusty1s's avatar
typo  
rusty1s committed
181
bias = None  # do not apply an additional bias
rusty1s's avatar
bugfix  
rusty1s committed
182

rusty1s's avatar
rusty1s committed
183
184
out = spline_conv(x, edge_index, pseudo, weight, kernel_size,
                  is_open_spline, degree, norm, root_weight, bias)
rusty1s's avatar
bugfix  
rusty1s committed
185

rusty1s's avatar
rename  
rusty1s committed
186
print(out.size())
rusty1s's avatar
typo  
rusty1s committed
187
torch.Size([4, 4])  # 4 nodes with 4 features each
rusty1s's avatar
bugfix  
rusty1s committed
188
189
```

rusty1s's avatar
rusty1s committed
190
191
192
193
194
195
196
197
## Cite

Please cite our paper if you use this code in your own work:

```
@inproceedings{Fey/etal/2018,
  title={{SplineCNN}: Fast Geometric Deep Learning with Continuous {B}-Spline Kernels},
  author={Fey, Matthias and Lenssen, Jan Eric and Weichert, Frank and M{\"u}ller, Heinrich},
Matthias Fey's avatar
Matthias Fey committed
198
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
rusty1s's avatar
rusty1s committed
199
200
201
  year={2018},
}
```
rusty1s's avatar
typos  
rusty1s committed
202
203
204
205

## Running tests

```
rusty1s's avatar
rusty1s committed
206
pytest
rusty1s's avatar
typos  
rusty1s committed
207
```
rusty1s's avatar
rusty1s committed
208
209
210
211
212
213
214
215
216
217
218
219
220

## C++ API

`torch-spline-conv` also offers a C++ API that contains C++ equivalent of python models.

```
mkdir build
cd build
# Add -DWITH_CUDA=on support for the CUDA if needed
cmake ..
make
make install
```