spmm.cpp 13 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
#include <Python.h>
rusty1s's avatar
matmul  
rusty1s committed
2
3
4
5
6
7
8
9
#include <torch/script.h>

#include "cpu/spmm_cpu.h"

#ifdef WITH_CUDA
#include "cuda/spmm_cuda.h"
#endif

rusty1s's avatar
rusty1s committed
10
#ifdef _WIN32
rusty1s's avatar
rusty1s committed
11
12
13
14
15
#ifdef WITH_CUDA
PyMODINIT_FUNC PyInit__spmm_cuda(void) { return NULL; }
#else
PyMODINIT_FUNC PyInit__spmm_cpu(void) { return NULL; }
#endif
rusty1s's avatar
rusty1s committed
16
17
#endif

rusty1s's avatar
matmul  
rusty1s committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
std::tuple<torch::Tensor, torch::optional<torch::Tensor>>
spmm_fw(torch::Tensor rowptr, torch::Tensor col,
        torch::optional<torch::Tensor> optional_value, torch::Tensor mat,
        std::string reduce) {
  if (rowptr.device().is_cuda()) {
#ifdef WITH_CUDA
    return spmm_cuda(rowptr, col, optional_value, mat, reduce);
#else
    AT_ERROR("Not compiled with CUDA support");
#endif
  } else {
    return spmm_cpu(rowptr, col, optional_value, mat, reduce);
  }
}

torch::Tensor spmm_value_bw(torch::Tensor row, torch::Tensor rowptr,
                            torch::Tensor col, torch::Tensor mat,
                            torch::Tensor grad, std::string reduce) {
36
  if (row.device().is_cuda()) {
rusty1s's avatar
matmul  
rusty1s committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#ifdef WITH_CUDA
    return spmm_value_bw_cuda(row, rowptr, col, mat, grad, reduce);
#else
    AT_ERROR("Not compiled with CUDA support");
#endif
  } else {
    return spmm_value_bw_cpu(row, rowptr, col, mat, grad, reduce);
  }
}

using torch::autograd::AutogradContext;
using torch::autograd::Variable;
using torch::autograd::variable_list;

class SPMMSum : public torch::autograd::Function<SPMMSum> {
public:
  static variable_list forward(AutogradContext *ctx,
54
                               torch::optional<Variable> opt_row,
rusty1s's avatar
matmul  
rusty1s committed
55
                               Variable rowptr, Variable col, Variable value,
56
57
                               torch::optional<Variable> opt_colptr,
                               torch::optional<Variable> opt_csr2csc,
rusty1s's avatar
rusty1s committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
                               Variable mat, bool has_value) {

    if (has_value && torch::autograd::any_variable_requires_grad({value})) {
      AT_ASSERTM(opt_row.has_value(), "Argument `row` is missing");
    }

    if (torch::autograd::any_variable_requires_grad({mat})) {
      AT_ASSERTM(opt_row.has_value(), "Argument `row` is missing");
      AT_ASSERTM(opt_colptr.has_value(), "Argument `colptr` is missing");
      AT_ASSERTM(opt_csr2csc.has_value(), "Argument `csr2csc` is missing");
    }

    auto row = opt_row.has_value() ? opt_row.value() : col;
    auto colptr = opt_colptr.has_value() ? opt_colptr.value() : col;
    auto csr2csc = opt_csr2csc.has_value() ? opt_csr2csc.value() : col;
73
74

    torch::optional<torch::Tensor> opt_value = torch::nullopt;
rusty1s's avatar
rusty1s committed
75
    if (has_value)
76
77
78
      opt_value = value;

    auto out = std::get<0>(spmm_fw(rowptr, col, opt_value, mat, "sum"));
rusty1s's avatar
rusty1s committed
79
    ctx->saved_data["has_value"] = has_value;
rusty1s's avatar
matmul  
rusty1s committed
80
81
82
83
84
    ctx->save_for_backward({row, rowptr, col, value, colptr, csr2csc, mat});
    return {out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
rusty1s's avatar
rusty1s committed
85
    auto has_value = ctx->saved_data["has_value"].toBool();
rusty1s's avatar
matmul  
rusty1s committed
86
87
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
88
89
    auto row = saved[0], rowptr = saved[1], col = saved[2], value = saved[3],
         colptr = saved[4], csr2csc = saved[5], mat = saved[6];
rusty1s's avatar
matmul  
rusty1s committed
90
91

    auto grad_value = Variable();
rusty1s's avatar
rusty1s committed
92
    if (has_value > 0 && torch::autograd::any_variable_requires_grad({value})) {
rusty1s's avatar
matmul  
rusty1s committed
93
94
95
96
97
      grad_value = spmm_value_bw(row, rowptr, col, mat, grad_out, "sum");
    }

    auto grad_mat = Variable();
    if (torch::autograd::any_variable_requires_grad({mat})) {
98
      torch::optional<torch::Tensor> opt_value = torch::nullopt;
rusty1s's avatar
rusty1s committed
99
      if (has_value)
rusty1s's avatar
rusty1s committed
100
        opt_value = value.view({-1, 1}).index_select(0, csr2csc).view(-1);
101

rusty1s's avatar
matmul  
rusty1s committed
102
      grad_mat = std::get<0>(spmm_fw(colptr, row.index_select(0, csr2csc),
103
                                     opt_value, grad_out, "sum"));
rusty1s's avatar
matmul  
rusty1s committed
104
105
106
    }

    return {Variable(), Variable(), Variable(), grad_value,
rusty1s's avatar
rusty1s committed
107
            Variable(), Variable(), grad_mat,   Variable()};
rusty1s's avatar
matmul  
rusty1s committed
108
109
110
  }
};

111
112
113
114
115
116
117
118
class SPMMMean : public torch::autograd::Function<SPMMMean> {
public:
  static variable_list forward(AutogradContext *ctx,
                               torch::optional<Variable> opt_row,
                               Variable rowptr, Variable col, Variable value,
                               torch::optional<Variable> opt_rowcount,
                               torch::optional<Variable> opt_colptr,
                               torch::optional<Variable> opt_csr2csc,
rusty1s's avatar
rusty1s committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
                               Variable mat, bool has_value) {

    if (has_value && torch::autograd::any_variable_requires_grad({value})) {
      AT_ASSERTM(opt_row.has_value(), "Argument `row` is missing");
    }

    if (torch::autograd::any_variable_requires_grad({mat})) {
      AT_ASSERTM(opt_row.has_value(), "Argument `row` is missing");
      AT_ASSERTM(opt_rowcount.has_value(), "Argument `rowcount` is missing");
      AT_ASSERTM(opt_colptr.has_value(), "Argument `colptr` is missing");
      AT_ASSERTM(opt_csr2csc.has_value(), "Argument `csr2csc` is missing");
    }

    auto row = opt_row.has_value() ? opt_row.value() : col;
    auto rowcount = opt_rowcount.has_value() ? opt_rowcount.value() : col;
    auto colptr = opt_colptr.has_value() ? opt_colptr.value() : col;
    auto csr2csc = opt_csr2csc.has_value() ? opt_csr2csc.value() : col;
136
137

    torch::optional<torch::Tensor> opt_value = torch::nullopt;
rusty1s's avatar
rusty1s committed
138
    if (has_value)
139
140
141
      opt_value = value;

    auto out = std::get<0>(spmm_fw(rowptr, col, opt_value, mat, "mean"));
rusty1s's avatar
rusty1s committed
142
    ctx->saved_data["has_value"] = has_value;
143
144
145
146
147
148
    ctx->save_for_backward(
        {row, rowptr, col, value, rowcount, colptr, csr2csc, mat});
    return {out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
rusty1s's avatar
rusty1s committed
149
    auto has_value = ctx->saved_data["has_value"].toBool();
150
151
152
153
154
155
156
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
    auto row = saved[0], rowptr = saved[1], col = saved[2], value = saved[3],
         rowcount = saved[4], colptr = saved[5], csr2csc = saved[6],
         mat = saved[7];

    auto grad_value = Variable();
rusty1s's avatar
rusty1s committed
157
    if (has_value > 0 && torch::autograd::any_variable_requires_grad({value})) {
158
159
160
161
162
163
      grad_value = spmm_value_bw(row, rowptr, col, mat, grad_out, "mean");
    }

    auto grad_mat = Variable();
    if (torch::autograd::any_variable_requires_grad({mat})) {
      row = row.index_select(0, csr2csc);
rusty1s's avatar
rusty1s committed
164
      rowcount = rowcount.index_select(0, row).toType(mat.scalar_type());
rusty1s's avatar
rusty1s committed
165
      rowcount.masked_fill_(rowcount < 1, 1);
166

rusty1s's avatar
rusty1s committed
167
      if (has_value > 0)
rusty1s's avatar
rusty1s committed
168
169
        rowcount =
            value.view({-1, 1}).index_select(0, csr2csc).view(-1).div(rowcount);
170
171
172
173
174
175
      else
        rowcount.pow_(-1);

      grad_mat = std::get<0>(spmm_fw(colptr, row, rowcount, grad_out, "sum"));
    }

rusty1s's avatar
rusty1s committed
176
177
    return {Variable(), Variable(), Variable(), grad_value, Variable(),
            Variable(), Variable(), grad_mat,   Variable()};
178
179
180
  }
};

rusty1s's avatar
rusty1s committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
class SPMMMin : public torch::autograd::Function<SPMMMin> {
public:
  static variable_list forward(AutogradContext *ctx, Variable rowptr,
                               Variable col, Variable value, Variable mat,
                               bool has_value) {

    torch::optional<torch::Tensor> opt_value = torch::nullopt;
    if (has_value)
      opt_value = value;

    auto result = spmm_fw(rowptr, col, opt_value, mat, "min");
    auto out = std::get<0>(result);
    auto arg_out = std::get<1>(result).value();
    ctx->saved_data["has_value"] = has_value;
    ctx->save_for_backward({col, value, mat, arg_out});
    ctx->mark_non_differentiable({arg_out});
    return {out, arg_out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
    auto has_value = ctx->saved_data["has_value"].toBool();
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
    auto col = saved[0], value = saved[1], mat = saved[2], arg_out = saved[3];

    auto invalid_arg_mask = arg_out == col.size(0);
    arg_out = arg_out.masked_fill(invalid_arg_mask, 0);

    auto grad_value = Variable();
    if (has_value > 0 && torch::autograd::any_variable_requires_grad({value})) {
      auto ind = col.index_select(0, arg_out.flatten()).view_as(arg_out);
      auto out = mat.gather(-2, ind);
      out.mul_(grad_out);
      out.masked_fill_(invalid_arg_mask, 0);

      grad_value = torch::zeros_like(value);
      grad_value.scatter_add_(0, arg_out.flatten(), out.flatten());
    }

    auto grad_mat = Variable();
    if (torch::autograd::any_variable_requires_grad({mat})) {
      if (has_value > 0) {
rusty1s's avatar
rusty1s committed
223
224
225
226
        value = value.view({-1, 1})
                    .index_select(0, arg_out.flatten())
                    .view_as(arg_out)
                    .mul_(grad_out);
rusty1s's avatar
rusty1s committed
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
      } else
        value = grad_out;

      value.masked_fill_(invalid_arg_mask, 0);
      auto ind = col.index_select(0, arg_out.flatten()).view_as(arg_out);

      grad_mat = torch::zeros_like(mat);
      grad_mat.scatter_add_(-2, ind, value);
    }

    return {Variable(), Variable(), grad_value, grad_mat, Variable()};
  }
};

class SPMMMax : public torch::autograd::Function<SPMMMax> {
public:
  static variable_list forward(AutogradContext *ctx, Variable rowptr,
                               Variable col, Variable value, Variable mat,
                               bool has_value) {

    torch::optional<torch::Tensor> opt_value = torch::nullopt;
    if (has_value)
      opt_value = value;

    auto result = spmm_fw(rowptr, col, opt_value, mat, "max");
    auto out = std::get<0>(result);
    auto arg_out = std::get<1>(result).value();
    ctx->saved_data["has_value"] = has_value;
    ctx->save_for_backward({col, value, mat, arg_out});
    ctx->mark_non_differentiable({arg_out});
    return {out, arg_out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
    auto has_value = ctx->saved_data["has_value"].toBool();
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
    auto col = saved[0], value = saved[1], mat = saved[2], arg_out = saved[3];

    auto invalid_arg_mask = arg_out == col.size(0);
    arg_out = arg_out.masked_fill(invalid_arg_mask, 0);

    auto grad_value = Variable();
    if (has_value > 0 && torch::autograd::any_variable_requires_grad({value})) {
      auto ind = col.index_select(0, arg_out.flatten()).view_as(arg_out);
      auto out = mat.gather(-2, ind);
      out.mul_(grad_out);
      out.masked_fill_(invalid_arg_mask, 0);

      grad_value = torch::zeros_like(value);
      grad_value.scatter_add_(0, arg_out.flatten(), out.flatten());
    }

    auto grad_mat = Variable();
    if (torch::autograd::any_variable_requires_grad({mat})) {
      if (has_value > 0) {
rusty1s's avatar
rusty1s committed
283
284
285
286
        value = value.view({-1, 1})
                    .index_select(0, arg_out.flatten())
                    .view_as(arg_out)
                    .mul_(grad_out);
rusty1s's avatar
rusty1s committed
287
288
289
290
291
292
293
294
295
296
297
298
299
300
      } else
        value = grad_out;

      value.masked_fill_(invalid_arg_mask, 0);
      auto ind = col.index_select(0, arg_out.flatten()).view_as(arg_out);

      grad_mat = torch::zeros_like(mat);
      grad_mat.scatter_add_(-2, ind, value);
    }

    return {Variable(), Variable(), grad_value, grad_mat, Variable()};
  }
};

301
torch::Tensor spmm_sum(torch::optional<torch::Tensor> opt_row,
rusty1s's avatar
matmul  
rusty1s committed
302
                       torch::Tensor rowptr, torch::Tensor col,
303
304
305
                       torch::optional<torch::Tensor> opt_value,
                       torch::optional<torch::Tensor> opt_colptr,
                       torch::optional<torch::Tensor> opt_csr2csc,
rusty1s's avatar
matmul  
rusty1s committed
306
                       torch::Tensor mat) {
rusty1s's avatar
rusty1s committed
307
  auto value = opt_value.has_value() ? opt_value.value() : col;
308
  return SPMMSum::apply(opt_row, rowptr, col, value, opt_colptr, opt_csr2csc,
rusty1s's avatar
rusty1s committed
309
                        mat, opt_value.has_value())[0];
310
311
312
313
314
315
316
317
318
}

torch::Tensor spmm_mean(torch::optional<torch::Tensor> opt_row,
                        torch::Tensor rowptr, torch::Tensor col,
                        torch::optional<torch::Tensor> opt_value,
                        torch::optional<torch::Tensor> opt_rowcount,
                        torch::optional<torch::Tensor> opt_colptr,
                        torch::optional<torch::Tensor> opt_csr2csc,
                        torch::Tensor mat) {
rusty1s's avatar
rusty1s committed
319
  auto value = opt_value.has_value() ? opt_value.value() : col;
320
  return SPMMMean::apply(opt_row, rowptr, col, value, opt_rowcount, opt_colptr,
rusty1s's avatar
rusty1s committed
321
                         opt_csr2csc, mat, opt_value.has_value())[0];
rusty1s's avatar
matmul  
rusty1s committed
322
323
}

rusty1s's avatar
rusty1s committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
std::tuple<torch::Tensor, torch::Tensor>
spmm_min(torch::Tensor rowptr, torch::Tensor col,
         torch::optional<torch::Tensor> opt_value, torch::Tensor mat) {
  auto value = opt_value.has_value() ? opt_value.value() : col;
  auto result = SPMMMin::apply(rowptr, col, value, mat, opt_value.has_value());
  return std::make_tuple(result[0], result[1]);
}

std::tuple<torch::Tensor, torch::Tensor>
spmm_max(torch::Tensor rowptr, torch::Tensor col,
         torch::optional<torch::Tensor> opt_value, torch::Tensor mat) {
  auto value = opt_value.has_value() ? opt_value.value() : col;
  auto result = SPMMMax::apply(rowptr, col, value, mat, opt_value.has_value());
  return std::make_tuple(result[0], result[1]);
}

340
341
static auto registry = torch::RegisterOperators()
                           .op("torch_sparse::spmm_sum", &spmm_sum)
rusty1s's avatar
rusty1s committed
342
343
344
                           .op("torch_sparse::spmm_mean", &spmm_mean)
                           .op("torch_sparse::spmm_min", &spmm_min)
                           .op("torch_sparse::spmm_max", &spmm_max);