spmm.cpp 12.8 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
#include <Python.h>
rusty1s's avatar
matmul  
rusty1s committed
2
3
4
5
6
7
8
9
#include <torch/script.h>

#include "cpu/spmm_cpu.h"

#ifdef WITH_CUDA
#include "cuda/spmm_cuda.h"
#endif

rusty1s's avatar
rusty1s committed
10
11
12
13
#ifdef _WIN32
PyMODINIT_FUNC PyInit__spmm(void) { return NULL; }
#endif

rusty1s's avatar
matmul  
rusty1s committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
std::tuple<torch::Tensor, torch::optional<torch::Tensor>>
spmm_fw(torch::Tensor rowptr, torch::Tensor col,
        torch::optional<torch::Tensor> optional_value, torch::Tensor mat,
        std::string reduce) {
  if (rowptr.device().is_cuda()) {
#ifdef WITH_CUDA
    return spmm_cuda(rowptr, col, optional_value, mat, reduce);
#else
    AT_ERROR("Not compiled with CUDA support");
#endif
  } else {
    return spmm_cpu(rowptr, col, optional_value, mat, reduce);
  }
}

torch::Tensor spmm_value_bw(torch::Tensor row, torch::Tensor rowptr,
                            torch::Tensor col, torch::Tensor mat,
                            torch::Tensor grad, std::string reduce) {
32
  if (row.device().is_cuda()) {
rusty1s's avatar
matmul  
rusty1s committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#ifdef WITH_CUDA
    return spmm_value_bw_cuda(row, rowptr, col, mat, grad, reduce);
#else
    AT_ERROR("Not compiled with CUDA support");
#endif
  } else {
    return spmm_value_bw_cpu(row, rowptr, col, mat, grad, reduce);
  }
}

using torch::autograd::AutogradContext;
using torch::autograd::Variable;
using torch::autograd::variable_list;

class SPMMSum : public torch::autograd::Function<SPMMSum> {
public:
  static variable_list forward(AutogradContext *ctx,
50
                               torch::optional<Variable> opt_row,
rusty1s's avatar
matmul  
rusty1s committed
51
                               Variable rowptr, Variable col, Variable value,
52
53
                               torch::optional<Variable> opt_colptr,
                               torch::optional<Variable> opt_csr2csc,
rusty1s's avatar
rusty1s committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
                               Variable mat, bool has_value) {

    if (has_value && torch::autograd::any_variable_requires_grad({value})) {
      AT_ASSERTM(opt_row.has_value(), "Argument `row` is missing");
    }

    if (torch::autograd::any_variable_requires_grad({mat})) {
      AT_ASSERTM(opt_row.has_value(), "Argument `row` is missing");
      AT_ASSERTM(opt_colptr.has_value(), "Argument `colptr` is missing");
      AT_ASSERTM(opt_csr2csc.has_value(), "Argument `csr2csc` is missing");
    }

    auto row = opt_row.has_value() ? opt_row.value() : col;
    auto colptr = opt_colptr.has_value() ? opt_colptr.value() : col;
    auto csr2csc = opt_csr2csc.has_value() ? opt_csr2csc.value() : col;
69
70

    torch::optional<torch::Tensor> opt_value = torch::nullopt;
rusty1s's avatar
rusty1s committed
71
    if (has_value)
72
73
74
      opt_value = value;

    auto out = std::get<0>(spmm_fw(rowptr, col, opt_value, mat, "sum"));
rusty1s's avatar
rusty1s committed
75
    ctx->saved_data["has_value"] = has_value;
rusty1s's avatar
matmul  
rusty1s committed
76
77
78
79
80
    ctx->save_for_backward({row, rowptr, col, value, colptr, csr2csc, mat});
    return {out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
rusty1s's avatar
rusty1s committed
81
    auto has_value = ctx->saved_data["has_value"].toBool();
rusty1s's avatar
matmul  
rusty1s committed
82
83
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
84
85
    auto row = saved[0], rowptr = saved[1], col = saved[2], value = saved[3],
         colptr = saved[4], csr2csc = saved[5], mat = saved[6];
rusty1s's avatar
matmul  
rusty1s committed
86
87

    auto grad_value = Variable();
rusty1s's avatar
rusty1s committed
88
    if (has_value > 0 && torch::autograd::any_variable_requires_grad({value})) {
rusty1s's avatar
matmul  
rusty1s committed
89
90
91
92
93
      grad_value = spmm_value_bw(row, rowptr, col, mat, grad_out, "sum");
    }

    auto grad_mat = Variable();
    if (torch::autograd::any_variable_requires_grad({mat})) {
94
      torch::optional<torch::Tensor> opt_value = torch::nullopt;
rusty1s's avatar
rusty1s committed
95
      if (has_value)
96
97
        opt_value = value.index_select(0, csr2csc);

rusty1s's avatar
matmul  
rusty1s committed
98
      grad_mat = std::get<0>(spmm_fw(colptr, row.index_select(0, csr2csc),
99
                                     opt_value, grad_out, "sum"));
rusty1s's avatar
matmul  
rusty1s committed
100
101
102
    }

    return {Variable(), Variable(), Variable(), grad_value,
rusty1s's avatar
rusty1s committed
103
            Variable(), Variable(), grad_mat,   Variable()};
rusty1s's avatar
matmul  
rusty1s committed
104
105
106
  }
};

107
108
109
110
111
112
113
114
class SPMMMean : public torch::autograd::Function<SPMMMean> {
public:
  static variable_list forward(AutogradContext *ctx,
                               torch::optional<Variable> opt_row,
                               Variable rowptr, Variable col, Variable value,
                               torch::optional<Variable> opt_rowcount,
                               torch::optional<Variable> opt_colptr,
                               torch::optional<Variable> opt_csr2csc,
rusty1s's avatar
rusty1s committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
                               Variable mat, bool has_value) {

    if (has_value && torch::autograd::any_variable_requires_grad({value})) {
      AT_ASSERTM(opt_row.has_value(), "Argument `row` is missing");
    }

    if (torch::autograd::any_variable_requires_grad({mat})) {
      AT_ASSERTM(opt_row.has_value(), "Argument `row` is missing");
      AT_ASSERTM(opt_rowcount.has_value(), "Argument `rowcount` is missing");
      AT_ASSERTM(opt_colptr.has_value(), "Argument `colptr` is missing");
      AT_ASSERTM(opt_csr2csc.has_value(), "Argument `csr2csc` is missing");
    }

    auto row = opt_row.has_value() ? opt_row.value() : col;
    auto rowcount = opt_rowcount.has_value() ? opt_rowcount.value() : col;
    auto colptr = opt_colptr.has_value() ? opt_colptr.value() : col;
    auto csr2csc = opt_csr2csc.has_value() ? opt_csr2csc.value() : col;
132
133

    torch::optional<torch::Tensor> opt_value = torch::nullopt;
rusty1s's avatar
rusty1s committed
134
    if (has_value)
135
136
137
      opt_value = value;

    auto out = std::get<0>(spmm_fw(rowptr, col, opt_value, mat, "mean"));
rusty1s's avatar
rusty1s committed
138
    ctx->saved_data["has_value"] = has_value;
139
140
141
142
143
144
    ctx->save_for_backward(
        {row, rowptr, col, value, rowcount, colptr, csr2csc, mat});
    return {out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
rusty1s's avatar
rusty1s committed
145
    auto has_value = ctx->saved_data["has_value"].toBool();
146
147
148
149
150
151
152
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
    auto row = saved[0], rowptr = saved[1], col = saved[2], value = saved[3],
         rowcount = saved[4], colptr = saved[5], csr2csc = saved[6],
         mat = saved[7];

    auto grad_value = Variable();
rusty1s's avatar
rusty1s committed
153
    if (has_value > 0 && torch::autograd::any_variable_requires_grad({value})) {
154
155
156
157
158
159
160
161
162
      grad_value = spmm_value_bw(row, rowptr, col, mat, grad_out, "mean");
    }

    auto grad_mat = Variable();
    if (torch::autograd::any_variable_requires_grad({mat})) {
      row = row.index_select(0, csr2csc);
      rowcount = rowcount.toType(mat.scalar_type()).index_select(0, row);
      rowcount.clamp_(1);

rusty1s's avatar
rusty1s committed
163
      if (has_value > 0)
164
165
166
167
168
169
170
        rowcount = value.index_select(0, csr2csc).div(rowcount);
      else
        rowcount.pow_(-1);

      grad_mat = std::get<0>(spmm_fw(colptr, row, rowcount, grad_out, "sum"));
    }

rusty1s's avatar
rusty1s committed
171
172
    return {Variable(), Variable(), Variable(), grad_value, Variable(),
            Variable(), Variable(), grad_mat,   Variable()};
173
174
175
  }
};

rusty1s's avatar
rusty1s committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
class SPMMMin : public torch::autograd::Function<SPMMMin> {
public:
  static variable_list forward(AutogradContext *ctx, Variable rowptr,
                               Variable col, Variable value, Variable mat,
                               bool has_value) {

    torch::optional<torch::Tensor> opt_value = torch::nullopt;
    if (has_value)
      opt_value = value;

    auto result = spmm_fw(rowptr, col, opt_value, mat, "min");
    auto out = std::get<0>(result);
    auto arg_out = std::get<1>(result).value();
    ctx->saved_data["has_value"] = has_value;
    ctx->save_for_backward({col, value, mat, arg_out});
    ctx->mark_non_differentiable({arg_out});
    return {out, arg_out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
    auto has_value = ctx->saved_data["has_value"].toBool();
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
    auto col = saved[0], value = saved[1], mat = saved[2], arg_out = saved[3];

    auto invalid_arg_mask = arg_out == col.size(0);
    arg_out = arg_out.masked_fill(invalid_arg_mask, 0);

    auto grad_value = Variable();
    if (has_value > 0 && torch::autograd::any_variable_requires_grad({value})) {
      auto ind = col.index_select(0, arg_out.flatten()).view_as(arg_out);
      auto out = mat.gather(-2, ind);
      out.mul_(grad_out);
      out.masked_fill_(invalid_arg_mask, 0);

      grad_value = torch::zeros_like(value);
      grad_value.scatter_add_(0, arg_out.flatten(), out.flatten());
    }

    auto grad_mat = Variable();
    if (torch::autograd::any_variable_requires_grad({mat})) {
      if (has_value > 0) {
        value = value.index_select(0, arg_out.flatten()).view_as(arg_out);
        value.mul_(grad_out);
      } else
        value = grad_out;

      value.masked_fill_(invalid_arg_mask, 0);
      auto ind = col.index_select(0, arg_out.flatten()).view_as(arg_out);

      grad_mat = torch::zeros_like(mat);
      grad_mat.scatter_add_(-2, ind, value);
    }

    return {Variable(), Variable(), grad_value, grad_mat, Variable()};
  }
};

class SPMMMax : public torch::autograd::Function<SPMMMax> {
public:
  static variable_list forward(AutogradContext *ctx, Variable rowptr,
                               Variable col, Variable value, Variable mat,
                               bool has_value) {

    torch::optional<torch::Tensor> opt_value = torch::nullopt;
    if (has_value)
      opt_value = value;

    auto result = spmm_fw(rowptr, col, opt_value, mat, "max");
    auto out = std::get<0>(result);
    auto arg_out = std::get<1>(result).value();
    ctx->saved_data["has_value"] = has_value;
    ctx->save_for_backward({col, value, mat, arg_out});
    ctx->mark_non_differentiable({arg_out});
    return {out, arg_out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
    auto has_value = ctx->saved_data["has_value"].toBool();
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
    auto col = saved[0], value = saved[1], mat = saved[2], arg_out = saved[3];

    auto invalid_arg_mask = arg_out == col.size(0);
    arg_out = arg_out.masked_fill(invalid_arg_mask, 0);

    auto grad_value = Variable();
    if (has_value > 0 && torch::autograd::any_variable_requires_grad({value})) {
      auto ind = col.index_select(0, arg_out.flatten()).view_as(arg_out);
      auto out = mat.gather(-2, ind);
      out.mul_(grad_out);
      out.masked_fill_(invalid_arg_mask, 0);

      grad_value = torch::zeros_like(value);
      grad_value.scatter_add_(0, arg_out.flatten(), out.flatten());
    }

    auto grad_mat = Variable();
    if (torch::autograd::any_variable_requires_grad({mat})) {
      if (has_value > 0) {
        value = value.index_select(0, arg_out.flatten()).view_as(arg_out);
        value.mul_(grad_out);
      } else
        value = grad_out;

      value.masked_fill_(invalid_arg_mask, 0);
      auto ind = col.index_select(0, arg_out.flatten()).view_as(arg_out);

      grad_mat = torch::zeros_like(mat);
      grad_mat.scatter_add_(-2, ind, value);
    }

    return {Variable(), Variable(), grad_value, grad_mat, Variable()};
  }
};

292
torch::Tensor spmm_sum(torch::optional<torch::Tensor> opt_row,
rusty1s's avatar
matmul  
rusty1s committed
293
                       torch::Tensor rowptr, torch::Tensor col,
294
295
296
                       torch::optional<torch::Tensor> opt_value,
                       torch::optional<torch::Tensor> opt_colptr,
                       torch::optional<torch::Tensor> opt_csr2csc,
rusty1s's avatar
matmul  
rusty1s committed
297
                       torch::Tensor mat) {
rusty1s's avatar
rusty1s committed
298
  auto value = opt_value.has_value() ? opt_value.value() : col;
299
  return SPMMSum::apply(opt_row, rowptr, col, value, opt_colptr, opt_csr2csc,
rusty1s's avatar
rusty1s committed
300
                        mat, opt_value.has_value())[0];
301
302
303
304
305
306
307
308
309
}

torch::Tensor spmm_mean(torch::optional<torch::Tensor> opt_row,
                        torch::Tensor rowptr, torch::Tensor col,
                        torch::optional<torch::Tensor> opt_value,
                        torch::optional<torch::Tensor> opt_rowcount,
                        torch::optional<torch::Tensor> opt_colptr,
                        torch::optional<torch::Tensor> opt_csr2csc,
                        torch::Tensor mat) {
rusty1s's avatar
rusty1s committed
310
  auto value = opt_value.has_value() ? opt_value.value() : col;
311
  return SPMMMean::apply(opt_row, rowptr, col, value, opt_rowcount, opt_colptr,
rusty1s's avatar
rusty1s committed
312
                         opt_csr2csc, mat, opt_value.has_value())[0];
rusty1s's avatar
matmul  
rusty1s committed
313
314
}

rusty1s's avatar
rusty1s committed
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
std::tuple<torch::Tensor, torch::Tensor>
spmm_min(torch::Tensor rowptr, torch::Tensor col,
         torch::optional<torch::Tensor> opt_value, torch::Tensor mat) {
  auto value = opt_value.has_value() ? opt_value.value() : col;
  auto result = SPMMMin::apply(rowptr, col, value, mat, opt_value.has_value());
  return std::make_tuple(result[0], result[1]);
}

std::tuple<torch::Tensor, torch::Tensor>
spmm_max(torch::Tensor rowptr, torch::Tensor col,
         torch::optional<torch::Tensor> opt_value, torch::Tensor mat) {
  auto value = opt_value.has_value() ? opt_value.value() : col;
  auto result = SPMMMax::apply(rowptr, col, value, mat, opt_value.has_value());
  return std::make_tuple(result[0], result[1]);
}

331
332
static auto registry = torch::RegisterOperators()
                           .op("torch_sparse::spmm_sum", &spmm_sum)
rusty1s's avatar
rusty1s committed
333
334
335
                           .op("torch_sparse::spmm_mean", &spmm_mean)
                           .op("torch_sparse::spmm_min", &spmm_min)
                           .op("torch_sparse::spmm_max", &spmm_max);