spmm.cpp 12.7 KB
Newer Older
rusty1s's avatar
matmul  
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#include <torch/script.h>

#include "cpu/spmm_cpu.h"

#ifdef WITH_CUDA
#include "cuda/spmm_cuda.h"
#endif

std::tuple<torch::Tensor, torch::optional<torch::Tensor>>
spmm_fw(torch::Tensor rowptr, torch::Tensor col,
        torch::optional<torch::Tensor> optional_value, torch::Tensor mat,
        std::string reduce) {
  if (rowptr.device().is_cuda()) {
#ifdef WITH_CUDA
    return spmm_cuda(rowptr, col, optional_value, mat, reduce);
#else
    AT_ERROR("Not compiled with CUDA support");
#endif
  } else {
    return spmm_cpu(rowptr, col, optional_value, mat, reduce);
  }
}

torch::Tensor spmm_value_bw(torch::Tensor row, torch::Tensor rowptr,
                            torch::Tensor col, torch::Tensor mat,
                            torch::Tensor grad, std::string reduce) {
27
  if (row.device().is_cuda()) {
rusty1s's avatar
matmul  
rusty1s committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#ifdef WITH_CUDA
    return spmm_value_bw_cuda(row, rowptr, col, mat, grad, reduce);
#else
    AT_ERROR("Not compiled with CUDA support");
#endif
  } else {
    return spmm_value_bw_cpu(row, rowptr, col, mat, grad, reduce);
  }
}

using torch::autograd::AutogradContext;
using torch::autograd::Variable;
using torch::autograd::variable_list;

class SPMMSum : public torch::autograd::Function<SPMMSum> {
public:
  static variable_list forward(AutogradContext *ctx,
45
                               torch::optional<Variable> opt_row,
rusty1s's avatar
matmul  
rusty1s committed
46
                               Variable rowptr, Variable col, Variable value,
47
48
                               torch::optional<Variable> opt_colptr,
                               torch::optional<Variable> opt_csr2csc,
rusty1s's avatar
rusty1s committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
                               Variable mat, bool has_value) {

    if (has_value && torch::autograd::any_variable_requires_grad({value})) {
      AT_ASSERTM(opt_row.has_value(), "Argument `row` is missing");
    }

    if (torch::autograd::any_variable_requires_grad({mat})) {
      AT_ASSERTM(opt_row.has_value(), "Argument `row` is missing");
      AT_ASSERTM(opt_colptr.has_value(), "Argument `colptr` is missing");
      AT_ASSERTM(opt_csr2csc.has_value(), "Argument `csr2csc` is missing");
    }

    auto row = opt_row.has_value() ? opt_row.value() : col;
    auto colptr = opt_colptr.has_value() ? opt_colptr.value() : col;
    auto csr2csc = opt_csr2csc.has_value() ? opt_csr2csc.value() : col;
64
65

    torch::optional<torch::Tensor> opt_value = torch::nullopt;
rusty1s's avatar
rusty1s committed
66
    if (has_value)
67
68
69
      opt_value = value;

    auto out = std::get<0>(spmm_fw(rowptr, col, opt_value, mat, "sum"));
rusty1s's avatar
rusty1s committed
70
    ctx->saved_data["has_value"] = has_value;
rusty1s's avatar
matmul  
rusty1s committed
71
72
73
74
75
    ctx->save_for_backward({row, rowptr, col, value, colptr, csr2csc, mat});
    return {out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
rusty1s's avatar
rusty1s committed
76
    auto has_value = ctx->saved_data["has_value"].toBool();
rusty1s's avatar
matmul  
rusty1s committed
77
78
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
79
80
    auto row = saved[0], rowptr = saved[1], col = saved[2], value = saved[3],
         colptr = saved[4], csr2csc = saved[5], mat = saved[6];
rusty1s's avatar
matmul  
rusty1s committed
81
82

    auto grad_value = Variable();
rusty1s's avatar
rusty1s committed
83
    if (has_value > 0 && torch::autograd::any_variable_requires_grad({value})) {
rusty1s's avatar
matmul  
rusty1s committed
84
85
86
87
88
      grad_value = spmm_value_bw(row, rowptr, col, mat, grad_out, "sum");
    }

    auto grad_mat = Variable();
    if (torch::autograd::any_variable_requires_grad({mat})) {
89
      torch::optional<torch::Tensor> opt_value = torch::nullopt;
rusty1s's avatar
rusty1s committed
90
      if (has_value)
91
92
        opt_value = value.index_select(0, csr2csc);

rusty1s's avatar
matmul  
rusty1s committed
93
      grad_mat = std::get<0>(spmm_fw(colptr, row.index_select(0, csr2csc),
94
                                     opt_value, grad_out, "sum"));
rusty1s's avatar
matmul  
rusty1s committed
95
96
97
    }

    return {Variable(), Variable(), Variable(), grad_value,
rusty1s's avatar
rusty1s committed
98
            Variable(), Variable(), grad_mat,   Variable()};
rusty1s's avatar
matmul  
rusty1s committed
99
100
101
  }
};

102
103
104
105
106
107
108
109
class SPMMMean : public torch::autograd::Function<SPMMMean> {
public:
  static variable_list forward(AutogradContext *ctx,
                               torch::optional<Variable> opt_row,
                               Variable rowptr, Variable col, Variable value,
                               torch::optional<Variable> opt_rowcount,
                               torch::optional<Variable> opt_colptr,
                               torch::optional<Variable> opt_csr2csc,
rusty1s's avatar
rusty1s committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
                               Variable mat, bool has_value) {

    if (has_value && torch::autograd::any_variable_requires_grad({value})) {
      AT_ASSERTM(opt_row.has_value(), "Argument `row` is missing");
    }

    if (torch::autograd::any_variable_requires_grad({mat})) {
      AT_ASSERTM(opt_row.has_value(), "Argument `row` is missing");
      AT_ASSERTM(opt_rowcount.has_value(), "Argument `rowcount` is missing");
      AT_ASSERTM(opt_colptr.has_value(), "Argument `colptr` is missing");
      AT_ASSERTM(opt_csr2csc.has_value(), "Argument `csr2csc` is missing");
    }

    auto row = opt_row.has_value() ? opt_row.value() : col;
    auto rowcount = opt_rowcount.has_value() ? opt_rowcount.value() : col;
    auto colptr = opt_colptr.has_value() ? opt_colptr.value() : col;
    auto csr2csc = opt_csr2csc.has_value() ? opt_csr2csc.value() : col;
127
128

    torch::optional<torch::Tensor> opt_value = torch::nullopt;
rusty1s's avatar
rusty1s committed
129
    if (has_value)
130
131
132
      opt_value = value;

    auto out = std::get<0>(spmm_fw(rowptr, col, opt_value, mat, "mean"));
rusty1s's avatar
rusty1s committed
133
    ctx->saved_data["has_value"] = has_value;
134
135
136
137
138
139
    ctx->save_for_backward(
        {row, rowptr, col, value, rowcount, colptr, csr2csc, mat});
    return {out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
rusty1s's avatar
rusty1s committed
140
    auto has_value = ctx->saved_data["has_value"].toBool();
141
142
143
144
145
146
147
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
    auto row = saved[0], rowptr = saved[1], col = saved[2], value = saved[3],
         rowcount = saved[4], colptr = saved[5], csr2csc = saved[6],
         mat = saved[7];

    auto grad_value = Variable();
rusty1s's avatar
rusty1s committed
148
    if (has_value > 0 && torch::autograd::any_variable_requires_grad({value})) {
149
150
151
152
153
154
155
156
157
      grad_value = spmm_value_bw(row, rowptr, col, mat, grad_out, "mean");
    }

    auto grad_mat = Variable();
    if (torch::autograd::any_variable_requires_grad({mat})) {
      row = row.index_select(0, csr2csc);
      rowcount = rowcount.toType(mat.scalar_type()).index_select(0, row);
      rowcount.clamp_(1);

rusty1s's avatar
rusty1s committed
158
      if (has_value > 0)
159
160
161
162
163
164
165
        rowcount = value.index_select(0, csr2csc).div(rowcount);
      else
        rowcount.pow_(-1);

      grad_mat = std::get<0>(spmm_fw(colptr, row, rowcount, grad_out, "sum"));
    }

rusty1s's avatar
rusty1s committed
166
167
    return {Variable(), Variable(), Variable(), grad_value, Variable(),
            Variable(), Variable(), grad_mat,   Variable()};
168
169
170
  }
};

rusty1s's avatar
rusty1s committed
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
class SPMMMin : public torch::autograd::Function<SPMMMin> {
public:
  static variable_list forward(AutogradContext *ctx, Variable rowptr,
                               Variable col, Variable value, Variable mat,
                               bool has_value) {

    torch::optional<torch::Tensor> opt_value = torch::nullopt;
    if (has_value)
      opt_value = value;

    auto result = spmm_fw(rowptr, col, opt_value, mat, "min");
    auto out = std::get<0>(result);
    auto arg_out = std::get<1>(result).value();
    ctx->saved_data["has_value"] = has_value;
    ctx->save_for_backward({col, value, mat, arg_out});
    ctx->mark_non_differentiable({arg_out});
    return {out, arg_out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
    auto has_value = ctx->saved_data["has_value"].toBool();
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
    auto col = saved[0], value = saved[1], mat = saved[2], arg_out = saved[3];

    auto invalid_arg_mask = arg_out == col.size(0);
    arg_out = arg_out.masked_fill(invalid_arg_mask, 0);

    auto grad_value = Variable();
    if (has_value > 0 && torch::autograd::any_variable_requires_grad({value})) {
      auto ind = col.index_select(0, arg_out.flatten()).view_as(arg_out);
      auto out = mat.gather(-2, ind);
      out.mul_(grad_out);
      out.masked_fill_(invalid_arg_mask, 0);

      grad_value = torch::zeros_like(value);
      grad_value.scatter_add_(0, arg_out.flatten(), out.flatten());
    }

    auto grad_mat = Variable();
    if (torch::autograd::any_variable_requires_grad({mat})) {
      if (has_value > 0) {
        value = value.index_select(0, arg_out.flatten()).view_as(arg_out);
        value.mul_(grad_out);
      } else
        value = grad_out;

      value.masked_fill_(invalid_arg_mask, 0);
      auto ind = col.index_select(0, arg_out.flatten()).view_as(arg_out);

      grad_mat = torch::zeros_like(mat);
      grad_mat.scatter_add_(-2, ind, value);
    }

    return {Variable(), Variable(), grad_value, grad_mat, Variable()};
  }
};

class SPMMMax : public torch::autograd::Function<SPMMMax> {
public:
  static variable_list forward(AutogradContext *ctx, Variable rowptr,
                               Variable col, Variable value, Variable mat,
                               bool has_value) {

    torch::optional<torch::Tensor> opt_value = torch::nullopt;
    if (has_value)
      opt_value = value;

    auto result = spmm_fw(rowptr, col, opt_value, mat, "max");
    auto out = std::get<0>(result);
    auto arg_out = std::get<1>(result).value();
    ctx->saved_data["has_value"] = has_value;
    ctx->save_for_backward({col, value, mat, arg_out});
    ctx->mark_non_differentiable({arg_out});
    return {out, arg_out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
    auto has_value = ctx->saved_data["has_value"].toBool();
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
    auto col = saved[0], value = saved[1], mat = saved[2], arg_out = saved[3];

    auto invalid_arg_mask = arg_out == col.size(0);
    arg_out = arg_out.masked_fill(invalid_arg_mask, 0);

    auto grad_value = Variable();
    if (has_value > 0 && torch::autograd::any_variable_requires_grad({value})) {
      auto ind = col.index_select(0, arg_out.flatten()).view_as(arg_out);
      auto out = mat.gather(-2, ind);
      out.mul_(grad_out);
      out.masked_fill_(invalid_arg_mask, 0);

      grad_value = torch::zeros_like(value);
      grad_value.scatter_add_(0, arg_out.flatten(), out.flatten());
    }

    auto grad_mat = Variable();
    if (torch::autograd::any_variable_requires_grad({mat})) {
      if (has_value > 0) {
        value = value.index_select(0, arg_out.flatten()).view_as(arg_out);
        value.mul_(grad_out);
      } else
        value = grad_out;

      value.masked_fill_(invalid_arg_mask, 0);
      auto ind = col.index_select(0, arg_out.flatten()).view_as(arg_out);

      grad_mat = torch::zeros_like(mat);
      grad_mat.scatter_add_(-2, ind, value);
    }

    return {Variable(), Variable(), grad_value, grad_mat, Variable()};
  }
};

287
torch::Tensor spmm_sum(torch::optional<torch::Tensor> opt_row,
rusty1s's avatar
matmul  
rusty1s committed
288
                       torch::Tensor rowptr, torch::Tensor col,
289
290
291
                       torch::optional<torch::Tensor> opt_value,
                       torch::optional<torch::Tensor> opt_colptr,
                       torch::optional<torch::Tensor> opt_csr2csc,
rusty1s's avatar
matmul  
rusty1s committed
292
                       torch::Tensor mat) {
rusty1s's avatar
rusty1s committed
293
  auto value = opt_value.has_value() ? opt_value.value() : col;
294
  return SPMMSum::apply(opt_row, rowptr, col, value, opt_colptr, opt_csr2csc,
rusty1s's avatar
rusty1s committed
295
                        mat, opt_value.has_value())[0];
296
297
298
299
300
301
302
303
304
}

torch::Tensor spmm_mean(torch::optional<torch::Tensor> opt_row,
                        torch::Tensor rowptr, torch::Tensor col,
                        torch::optional<torch::Tensor> opt_value,
                        torch::optional<torch::Tensor> opt_rowcount,
                        torch::optional<torch::Tensor> opt_colptr,
                        torch::optional<torch::Tensor> opt_csr2csc,
                        torch::Tensor mat) {
rusty1s's avatar
rusty1s committed
305
  auto value = opt_value.has_value() ? opt_value.value() : col;
306
  return SPMMMean::apply(opt_row, rowptr, col, value, opt_rowcount, opt_colptr,
rusty1s's avatar
rusty1s committed
307
                         opt_csr2csc, mat, opt_value.has_value())[0];
rusty1s's avatar
matmul  
rusty1s committed
308
309
}

rusty1s's avatar
rusty1s committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
std::tuple<torch::Tensor, torch::Tensor>
spmm_min(torch::Tensor rowptr, torch::Tensor col,
         torch::optional<torch::Tensor> opt_value, torch::Tensor mat) {
  auto value = opt_value.has_value() ? opt_value.value() : col;
  auto result = SPMMMin::apply(rowptr, col, value, mat, opt_value.has_value());
  return std::make_tuple(result[0], result[1]);
}

std::tuple<torch::Tensor, torch::Tensor>
spmm_max(torch::Tensor rowptr, torch::Tensor col,
         torch::optional<torch::Tensor> opt_value, torch::Tensor mat) {
  auto value = opt_value.has_value() ? opt_value.value() : col;
  auto result = SPMMMax::apply(rowptr, col, value, mat, opt_value.has_value());
  return std::make_tuple(result[0], result[1]);
}

326
327
static auto registry = torch::RegisterOperators()
                           .op("torch_sparse::spmm_sum", &spmm_sum)
rusty1s's avatar
rusty1s committed
328
329
330
                           .op("torch_sparse::spmm_mean", &spmm_mean)
                           .op("torch_sparse::spmm_min", &spmm_min)
                           .op("torch_sparse::spmm_max", &spmm_max);