train_sfno.py 17.4 KB
Newer Older
Boris Bonev's avatar
Boris Bonev committed
1
2
3
4
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
Boris Bonev's avatar
Boris Bonev committed
5
#
Boris Bonev's avatar
Boris Bonev committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import os
import time

from tqdm import tqdm
from functools import partial

import torch
import torch.nn as nn
from torch.utils.data import DataLoader

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

47
48
from torch_harmonics.examples.sfno import PdeDataset

Boris Bonev's avatar
Boris Bonev committed
49
50
51
52
# wandb logging
import wandb
wandb.login()

53
def l2loss_sphere(solver, prd, tar, relative=False, squared=True):
Boris Bonev's avatar
Boris Bonev committed
54
55
56
    loss = solver.integrate_grid((prd - tar)**2, dimensionless=True).sum(dim=-1)
    if relative:
        loss = loss / solver.integrate_grid(tar**2, dimensionless=True).sum(dim=-1)
Boris Bonev's avatar
Boris Bonev committed
57

Boris Bonev's avatar
Boris Bonev committed
58
59
60
61
62
63
    if not squared:
        loss = torch.sqrt(loss)
    loss = loss.mean()

    return loss

64
def spectral_l2loss_sphere(solver, prd, tar, relative=False, squared=True):
Boris Bonev's avatar
Boris Bonev committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    # compute coefficients
    coeffs = torch.view_as_real(solver.sht(prd - tar))
    coeffs = coeffs[..., 0]**2 + coeffs[..., 1]**2
    norm2 = coeffs[..., :, 0] + 2 * torch.sum(coeffs[..., :, 1:], dim=-1)
    loss = torch.sum(norm2, dim=(-1,-2))

    if relative:
        tar_coeffs = torch.view_as_real(solver.sht(tar))
        tar_coeffs = tar_coeffs[..., 0]**2 + tar_coeffs[..., 1]**2
        tar_norm2 = tar_coeffs[..., :, 0] + 2 * torch.sum(tar_coeffs[..., :, 1:], dim=-1)
        tar_norm2 = torch.sum(tar_norm2, dim=(-1,-2))
        loss = loss / tar_norm2

    if not squared:
        loss = torch.sqrt(loss)
    loss = loss.mean()

    return loss

84
def spectral_loss_sphere(solver, prd, tar, relative=False, squared=True):
Boris Bonev's avatar
Boris Bonev committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
    # gradient weighting factors
    lmax = solver.sht.lmax
    ls = torch.arange(lmax).float()
    spectral_weights = (ls*(ls + 1)).reshape(1, 1, -1, 1).to(prd.device)

    # compute coefficients
    coeffs = torch.view_as_real(solver.sht(prd - tar))
    coeffs = coeffs[..., 0]**2 + coeffs[..., 1]**2
    coeffs = spectral_weights * coeffs
    norm2 = coeffs[..., :, 0] + 2 * torch.sum(coeffs[..., :, 1:], dim=-1)
    loss = torch.sum(norm2, dim=(-1,-2))

    if relative:
        tar_coeffs = torch.view_as_real(solver.sht(tar))
        tar_coeffs = tar_coeffs[..., 0]**2 + tar_coeffs[..., 1]**2
        tar_coeffs = spectral_weights * tar_coeffs
        tar_norm2 = tar_coeffs[..., :, 0] + 2 * torch.sum(tar_coeffs[..., :, 1:], dim=-1)
        tar_norm2 = torch.sum(tar_norm2, dim=(-1,-2))
        loss = loss / tar_norm2

    if not squared:
        loss = torch.sqrt(loss)
    loss = loss.mean()

    return loss

111
def h1loss_sphere(solver, prd, tar, relative=False, squared=True):
Boris Bonev's avatar
Boris Bonev committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    # gradient weighting factors
    lmax = solver.sht.lmax
    ls = torch.arange(lmax).float()
    spectral_weights = (ls*(ls + 1)).reshape(1, 1, -1, 1).to(prd.device)

    # compute coefficients
    coeffs = torch.view_as_real(solver.sht(prd - tar))
    coeffs = coeffs[..., 0]**2 + coeffs[..., 1]**2
    h1_coeffs = spectral_weights * coeffs
    h1_norm2 = h1_coeffs[..., :, 0] + 2 * torch.sum(h1_coeffs[..., :, 1:], dim=-1)
    l2_norm2 = coeffs[..., :, 0] + 2 * torch.sum(coeffs[..., :, 1:], dim=-1)
    h1_loss = torch.sum(h1_norm2, dim=(-1,-2))
    l2_loss = torch.sum(l2_norm2, dim=(-1,-2))

Boris Bonev's avatar
Boris Bonev committed
126
     # strictly speaking this is not exactly h1 loss
Boris Bonev's avatar
Boris Bonev committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
    if not squared:
        loss = torch.sqrt(h1_loss) + torch.sqrt(l2_loss)
    else:
        loss = h1_loss + l2_loss

    if relative:
        raise NotImplementedError("Relative H1 loss not implemented")

    loss = loss.mean()


    return loss

def fluct_l2loss_sphere(solver, prd, tar, inp, relative=False, polar_opt=0):
    # compute the weighting factor first
    fluct = solver.integrate_grid((tar - inp)**2, dimensionless=True, polar_opt=polar_opt)
    weight = fluct / torch.sum(fluct, dim=-1, keepdim=True)
    # weight = weight.reshape(*weight.shape, 1, 1)
Boris Bonev's avatar
Boris Bonev committed
145

Boris Bonev's avatar
Boris Bonev committed
146
147
148
149
150
151
    loss = weight * solver.integrate_grid((prd - tar)**2, dimensionless=True, polar_opt=polar_opt)
    if relative:
        loss = loss / (weight * solver.integrate_grid(tar**2, dimensionless=True, polar_opt=polar_opt))
    loss = torch.mean(loss)
    return loss

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# rolls out the FNO and compares to the classical solver
def autoregressive_inference(model,
                             dataset,
                             path_root,
                             nsteps,
                             autoreg_steps=10,
                             nskip=1,
                             plot_channel=0,
                             nics=20):

    model.eval()

    losses = np.zeros(nics)
    fno_times = np.zeros(nics)
    nwp_times = np.zeros(nics)

    for iic in range(nics):
        ic = dataset.solver.random_initial_condition(mach=0.2)
        inp_mean = dataset.inp_mean
        inp_var = dataset.inp_var

        prd = (dataset.solver.spec2grid(ic) - inp_mean) / torch.sqrt(inp_var)
        prd = prd.unsqueeze(0)
        uspec = ic.clone()

        # ML model
        start_time = time.time()
        for i in range(1, autoreg_steps+1):
            # evaluate the ML model
            prd = model(prd)

            if iic == nics-1 and nskip > 0 and i % nskip == 0:

                # do plotting
                fig = plt.figure(figsize=(7.5, 6))
                dataset.solver.plot_griddata(prd[0, plot_channel], fig, vmax=4, vmin=-4)
                plt.savefig(path_root+'_pred_'+str(i//nskip)+'.png')
                plt.clf()

        fno_times[iic] = time.time() - start_time

        # classical model
        start_time = time.time()
        for i in range(1, autoreg_steps+1):
Boris Bonev's avatar
Boris Bonev committed
196

197
198
            # advance classical model
            uspec = dataset.solver.timestep(uspec, nsteps)
Boris Bonev's avatar
Boris Bonev committed
199

200
201
            if iic == nics-1 and i % nskip == 0 and nskip > 0:
                ref = (dataset.solver.spec2grid(uspec) - inp_mean) / torch.sqrt(inp_var)
Boris Bonev's avatar
Boris Bonev committed
202

203
204
205
206
                fig = plt.figure(figsize=(7.5, 6))
                dataset.solver.plot_griddata(ref[plot_channel], fig, vmax=4, vmin=-4)
                plt.savefig(path_root+'_truth_'+str(i//nskip)+'.png')
                plt.clf()
Boris Bonev's avatar
Boris Bonev committed
207

208
        nwp_times[iic] = time.time() - start_time
Boris Bonev's avatar
Boris Bonev committed
209

210
211
212
213
        # ref = (dataset.solver.spec2grid(uspec) - inp_mean) / torch.sqrt(inp_var)
        ref = dataset.solver.spec2grid(uspec)
        prd = prd * torch.sqrt(inp_var) + inp_mean
        losses[iic] = l2loss_sphere(dataset.solver, prd, ref, relative=True).item()
Boris Bonev's avatar
Boris Bonev committed
214

Boris Bonev's avatar
Boris Bonev committed
215

216
    return losses, fno_times, nwp_times
Boris Bonev's avatar
Boris Bonev committed
217

218
219
220
221
222
223
# convenience function for logging weights and gradients
def log_weights_and_grads(model, iters=1):
    """
    Helper routine intended for debugging purposes
    """
    root_path = os.path.join(os.path.dirname(__file__), "weights_and_grads")
Boris Bonev's avatar
Boris Bonev committed
224

225
226
    weights_and_grads_fname = os.path.join(root_path, f"weights_and_grads_step{iters:03d}.tar")
    print(weights_and_grads_fname)
Boris Bonev's avatar
Boris Bonev committed
227

228
229
    weights_dict = {k:v for k,v in model.named_parameters()}
    grad_dict = {k:v.grad for k,v in model.named_parameters()}
Boris Bonev's avatar
Boris Bonev committed
230

231
232
    store_dict = {'iteration': iters, 'grads': grad_dict, 'weights': weights_dict}
    torch.save(store_dict, weights_and_grads_fname)
Boris Bonev's avatar
Boris Bonev committed
233

234
235
236
237
238
239
240
241
242
243
244
245
246
# training function
def train_model(model,
                dataloader,
                optimizer,
                gscaler,
                scheduler=None,
                nepochs=20,
                nfuture=0,
                num_examples=256,
                num_valid=8,
                loss_fn='l2',
                enable_amp=False,
                log_grads=0):
Boris Bonev's avatar
Boris Bonev committed
247

248
    train_start = time.time()
Boris Bonev's avatar
Boris Bonev committed
249

250
251
    # count iterations
    iters = 0
Boris Bonev's avatar
Boris Bonev committed
252

253
    for epoch in range(nepochs):
Boris Bonev's avatar
Boris Bonev committed
254

255
256
        # time each epoch
        epoch_start = time.time()
Boris Bonev's avatar
Boris Bonev committed
257

258
259
        dataloader.dataset.set_initial_condition('random')
        dataloader.dataset.set_num_examples(num_examples)
Boris Bonev's avatar
Boris Bonev committed
260

261
262
        # get the solver for its convenience functions
        solver = dataloader.dataset.solver
Boris Bonev's avatar
Boris Bonev committed
263

264
265
266
        # do the training
        acc_loss = 0
        model.train()
Boris Bonev's avatar
Boris Bonev committed
267

268
        for inp, tar in dataloader:
Boris Bonev's avatar
Boris Bonev committed
269
270

            with torch.autocast(device_type="cuda", enabled=enable_amp):
Boris Bonev's avatar
Boris Bonev committed
271

272
273
274
                prd = model(inp)
                for _ in range(nfuture):
                    prd = model(prd)
Boris Bonev's avatar
Boris Bonev committed
275

276
277
278
279
280
281
282
283
284
285
286
287
                if loss_fn == 'l2':
                    loss = l2loss_sphere(solver, prd, tar, relative=False)
                elif loss_fn == 'spectral l2':
                    loss = spectral_l2loss_sphere(solver, prd, tar, relative=False)
                elif loss_fn == 'h1':
                    loss = h1loss_sphere(solver, prd, tar, relative=False)
                elif loss_fn == 'spectral':
                    loss = spectral_loss_sphere(solver, prd, tar, relative=False)
                elif loss_fn == 'fluct':
                    loss = fluct_l2loss_sphere(solver, prd, tar, inp, relative=True)
                else:
                    raise NotImplementedError(f'Unknown loss function {loss_fn}')
Boris Bonev's avatar
Boris Bonev committed
288

289
            acc_loss += loss.item() * inp.size(0)
Boris Bonev's avatar
Boris Bonev committed
290

291
292
            optimizer.zero_grad(set_to_none=True)
            gscaler.scale(loss).backward()
Boris Bonev's avatar
Boris Bonev committed
293

294
295
            if log_grads and iters % log_grads == 0:
                log_weights_and_grads(model, iters=iters)
Boris Bonev's avatar
Boris Bonev committed
296

297
298
            gscaler.step(optimizer)
            gscaler.update()
Boris Bonev's avatar
Boris Bonev committed
299

300
            iters += 1
Boris Bonev's avatar
Boris Bonev committed
301

302
        acc_loss = acc_loss / len(dataloader.dataset)
Boris Bonev's avatar
Boris Bonev committed
303

304
305
        dataloader.dataset.set_initial_condition('random')
        dataloader.dataset.set_num_examples(num_valid)
Boris Bonev's avatar
Boris Bonev committed
306

307
308
        # perform validation
        valid_loss = 0
Boris Bonev's avatar
Boris Bonev committed
309
        model.eval()
310
311
312
313
314
315
        with torch.no_grad():
            for inp, tar in dataloader:
                prd = model(inp)
                for _ in range(nfuture):
                    prd = model(prd)
                loss = l2loss_sphere(solver, prd, tar, relative=True)
Boris Bonev's avatar
Boris Bonev committed
316

317
                valid_loss += loss.item() * inp.size(0)
Boris Bonev's avatar
Boris Bonev committed
318

319
        valid_loss = valid_loss / len(dataloader.dataset)
Boris Bonev's avatar
Boris Bonev committed
320

321
322
        if scheduler is not None:
            scheduler.step(valid_loss)
Boris Bonev's avatar
Boris Bonev committed
323

324
325
326
327
328
329
330
        epoch_time = time.time() - epoch_start

        print(f'--------------------------------------------------------------------------------')
        print(f'Epoch {epoch} summary:')
        print(f'time taken: {epoch_time}')
        print(f'accumulated training loss: {acc_loss}')
        print(f'relative validation loss: {valid_loss}')
Boris Bonev's avatar
Boris Bonev committed
331

332
333
334
        if wandb.run is not None:
            current_lr = optimizer.param_groups[0]['lr']
            wandb.log({"loss": acc_loss, "validation loss": valid_loss, "learning rate": current_lr})
Boris Bonev's avatar
Boris Bonev committed
335
336


337
    train_time = time.time() - train_start
Boris Bonev's avatar
Boris Bonev committed
338

339
340
341
    print(f'--------------------------------------------------------------------------------')
    print(f'done. Training took {train_time}.')
    return valid_loss
Boris Bonev's avatar
Boris Bonev committed
342

343
def main(train=True, load_checkpoint=False, enable_amp=False, log_grads=0):
Boris Bonev's avatar
Boris Bonev committed
344

345
346
347
    # set seed
    torch.manual_seed(333)
    torch.cuda.manual_seed(333)
Boris Bonev's avatar
Boris Bonev committed
348

349
    # set device
350
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
351
352
    if torch.cuda.is_available():
        torch.cuda.set_device(device.index)
Boris Bonev's avatar
Boris Bonev committed
353

354
355
356
357
358
    # 1 hour prediction steps
    dt = 1*3600
    dt_solver = 150
    nsteps = dt//dt_solver
    dataset = PdeDataset(dt=dt, nsteps=nsteps, dims=(256, 512), device=device, normalize=True)
Boris Bonev's avatar
Boris Bonev committed
359
    # There is still an issue with parallel dataloading. Do NOT use it at the moment
360
361
    # dataloader = DataLoader(dataset, batch_size=4, shuffle=True, num_workers=4, persistent_workers=True)
    dataloader = DataLoader(dataset, batch_size=4, shuffle=True, num_workers=0, persistent_workers=False)
Boris Bonev's avatar
Boris Bonev committed
362

363
364
    nlat = dataset.nlat
    nlon = dataset.nlon
Boris Bonev's avatar
Boris Bonev committed
365
366
367
368
369
370
371
372

    def count_parameters(model):
        return sum(p.numel() for p in model.parameters() if p.requires_grad)

    # prepare dicts containing models and corresponding metrics
    models = {}
    metrics = {}

373
374
375
376
377
378
379
380
381
382
383
384
    from torch_harmonics.examples.sfno import SphericalFourierNeuralOperatorNet as SFNO

    models["sfno_sc3_layer4_e16_linskip_nomlp"] = partial(SFNO, spectral_transform='sht', img_size=(nlat, nlon),  grid="equiangular",
                                                          num_layers=4, scale_factor=3, embed_dim=16, operator_type='driscoll-healy',
                                                          big_skip=False, pos_embed=False, use_mlp=False, normalization_layer="none")
    # models["sfno_sc3_layer4_e256_noskip_mlp"]   = partial(SFNO, spectral_transform='sht', img_size=(nlat, nlon),  grid="equiangular",
    #                                                       num_layers=4, scale_factor=3, embed_dim=256, operator_type='driscoll-healy',
    #                                                       big_skip=False, pos_embed=False, use_mlp=True, normalization_layer="none")
    # from torch_harmonics.examples.sfno.models.unet import UNet
    # models['unet_baseline'] = partial(UNet)


Boris Bonev's avatar
Boris Bonev committed
385
386
387
388
389
    # # U-Net if installed
    # from models.unet import UNet
    # models['unet_baseline'] = partial(UNet)

    # SFNO models
390
391
392
393
394
    # models['sfno_sc3_layer4_edim256_linear']    = partial(SFNO, spectral_transform='sht', img_size=(nlat, nlon), grid="equiangular",
    #                                                  num_layers=4, scale_factor=3, embed_dim=256, operator_type='driscoll-healy')
    # # FNO models
    # models['fno_sc3_layer4_edim256_linear']     = partial(SFNO, spectral_transform='fft', img_size=(nlat, nlon), grid="equiangular",
    #                                                  num_layers=4, scale_factor=3, embed_dim=256, operator_type='diagonal')
Boris Bonev's avatar
Boris Bonev committed
395
396
397
398
399
400
401

    # iterate over models and train each model
    root_path = os.path.dirname(__file__)
    for model_name, model_handle in models.items():

        model = model_handle().to(device)

402
403
        print(model)

Boris Bonev's avatar
Boris Bonev committed
404
405
406
407
408
409
410
411
412
413
414
        metrics[model_name] = {}

        num_params = count_parameters(model)
        print(f'number of trainable params: {num_params}')
        metrics[model_name]['num_params'] = num_params

        if load_checkpoint:
            model.load_state_dict(torch.load(os.path.join(root_path, 'checkpoints/'+model_name)))

        # run the training
        if train:
415
            run = wandb.init(project="sfno ablations spherical swe", group=model_name, name=model_name + '_' + str(time.time()), config=model_handle.keywords)
Boris Bonev's avatar
Boris Bonev committed
416
417

            # optimizer:
418
            optimizer = torch.optim.Adam(model.parameters(), lr=3E-3)
Boris Bonev's avatar
Boris Bonev committed
419
            scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min')
Boris Bonev's avatar
Boris Bonev committed
420
            gscaler = torch.GradScaler("cuda", enabled=enable_amp)
Boris Bonev's avatar
Boris Bonev committed
421
422
423
424

            start_time = time.time()

            print(f'Training {model_name}, single step')
425
            train_model(model, dataloader, optimizer, gscaler, scheduler, nepochs=10, loss_fn='l2', enable_amp=enable_amp, log_grads=log_grads)
Boris Bonev's avatar
Boris Bonev committed
426

427
428
429
430
431
432
433
434
            # # multistep training
            # print(f'Training {model_name}, two step')
            # optimizer = torch.optim.Adam(model.parameters(), lr=5E-5)
            # scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min')
            # gscaler = amp.GradScaler(enabled=enable_amp)
            # dataloader.dataset.nsteps = 2 * dt//dt_solver
            # train_model(model, dataloader, optimizer, gscaler, scheduler, nepochs=20, nfuture=1, enable_amp=enable_amp)
            # dataloader.dataset.nsteps = 1 * dt//dt_solver
Boris Bonev's avatar
Boris Bonev committed
435
436
437
438
439
440
441
442
443
444
445
446

            training_time = time.time() - start_time

            run.finish()

            torch.save(model.state_dict(), os.path.join(root_path, 'checkpoints/'+model_name))

        # set seed
        torch.manual_seed(333)
        torch.cuda.manual_seed(333)

        with torch.inference_mode():
447
            losses, fno_times, nwp_times = autoregressive_inference(model, dataset, os.path.join(root_path,'figures/'+model_name), nsteps=nsteps, autoreg_steps=10)
Boris Bonev's avatar
Boris Bonev committed
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
            metrics[model_name]['loss_mean'] = np.mean(losses)
            metrics[model_name]['loss_std'] = np.std(losses)
            metrics[model_name]['fno_time_mean'] = np.mean(fno_times)
            metrics[model_name]['fno_time_std'] = np.std(fno_times)
            metrics[model_name]['nwp_time_mean'] = np.mean(nwp_times)
            metrics[model_name]['nwp_time_std'] = np.std(nwp_times)
            if train:
                metrics[model_name]['training_time'] = training_time

    df = pd.DataFrame(metrics)
    df.to_pickle(os.path.join(root_path, 'output_data/metrics.pkl'))

if __name__ == "__main__":
    import torch.multiprocessing as mp
    mp.set_start_method('forkserver', force=True)

464
    main(train=True, load_checkpoint=False, enable_amp=False, log_grads=0)