train_sfno.py 17.4 KB
Newer Older
Boris Bonev's avatar
Boris Bonev committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
# 
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import os
import time

from tqdm import tqdm
from functools import partial

import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.cuda import amp

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

48
49
from torch_harmonics.examples.sfno import PdeDataset

Boris Bonev's avatar
Boris Bonev committed
50
51
52
53
# wandb logging
import wandb
wandb.login()

54
def l2loss_sphere(solver, prd, tar, relative=False, squared=True):
Boris Bonev's avatar
Boris Bonev committed
55
56
57
58
59
60
61
62
63
64
    loss = solver.integrate_grid((prd - tar)**2, dimensionless=True).sum(dim=-1)
    if relative:
        loss = loss / solver.integrate_grid(tar**2, dimensionless=True).sum(dim=-1)
    
    if not squared:
        loss = torch.sqrt(loss)
    loss = loss.mean()

    return loss

65
def spectral_l2loss_sphere(solver, prd, tar, relative=False, squared=True):
Boris Bonev's avatar
Boris Bonev committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    # compute coefficients
    coeffs = torch.view_as_real(solver.sht(prd - tar))
    coeffs = coeffs[..., 0]**2 + coeffs[..., 1]**2
    norm2 = coeffs[..., :, 0] + 2 * torch.sum(coeffs[..., :, 1:], dim=-1)
    loss = torch.sum(norm2, dim=(-1,-2))

    if relative:
        tar_coeffs = torch.view_as_real(solver.sht(tar))
        tar_coeffs = tar_coeffs[..., 0]**2 + tar_coeffs[..., 1]**2
        tar_norm2 = tar_coeffs[..., :, 0] + 2 * torch.sum(tar_coeffs[..., :, 1:], dim=-1)
        tar_norm2 = torch.sum(tar_norm2, dim=(-1,-2))
        loss = loss / tar_norm2

    if not squared:
        loss = torch.sqrt(loss)
    loss = loss.mean()

    return loss

85
def spectral_loss_sphere(solver, prd, tar, relative=False, squared=True):
Boris Bonev's avatar
Boris Bonev committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    # gradient weighting factors
    lmax = solver.sht.lmax
    ls = torch.arange(lmax).float()
    spectral_weights = (ls*(ls + 1)).reshape(1, 1, -1, 1).to(prd.device)

    # compute coefficients
    coeffs = torch.view_as_real(solver.sht(prd - tar))
    coeffs = coeffs[..., 0]**2 + coeffs[..., 1]**2
    coeffs = spectral_weights * coeffs
    norm2 = coeffs[..., :, 0] + 2 * torch.sum(coeffs[..., :, 1:], dim=-1)
    loss = torch.sum(norm2, dim=(-1,-2))

    if relative:
        tar_coeffs = torch.view_as_real(solver.sht(tar))
        tar_coeffs = tar_coeffs[..., 0]**2 + tar_coeffs[..., 1]**2
        tar_coeffs = spectral_weights * tar_coeffs
        tar_norm2 = tar_coeffs[..., :, 0] + 2 * torch.sum(tar_coeffs[..., :, 1:], dim=-1)
        tar_norm2 = torch.sum(tar_norm2, dim=(-1,-2))
        loss = loss / tar_norm2

    if not squared:
        loss = torch.sqrt(loss)
    loss = loss.mean()

    return loss

112
def h1loss_sphere(solver, prd, tar, relative=False, squared=True):
Boris Bonev's avatar
Boris Bonev committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    # gradient weighting factors
    lmax = solver.sht.lmax
    ls = torch.arange(lmax).float()
    spectral_weights = (ls*(ls + 1)).reshape(1, 1, -1, 1).to(prd.device)

    # compute coefficients
    coeffs = torch.view_as_real(solver.sht(prd - tar))
    coeffs = coeffs[..., 0]**2 + coeffs[..., 1]**2
    h1_coeffs = spectral_weights * coeffs
    h1_norm2 = h1_coeffs[..., :, 0] + 2 * torch.sum(h1_coeffs[..., :, 1:], dim=-1)
    l2_norm2 = coeffs[..., :, 0] + 2 * torch.sum(coeffs[..., :, 1:], dim=-1)
    h1_loss = torch.sum(h1_norm2, dim=(-1,-2))
    l2_loss = torch.sum(l2_norm2, dim=(-1,-2))

     # strictly speaking this is not exactly h1 loss 
    if not squared:
        loss = torch.sqrt(h1_loss) + torch.sqrt(l2_loss)
    else:
        loss = h1_loss + l2_loss

    if relative:
        raise NotImplementedError("Relative H1 loss not implemented")

    loss = loss.mean()


    return loss

def fluct_l2loss_sphere(solver, prd, tar, inp, relative=False, polar_opt=0):
    # compute the weighting factor first
    fluct = solver.integrate_grid((tar - inp)**2, dimensionless=True, polar_opt=polar_opt)
    weight = fluct / torch.sum(fluct, dim=-1, keepdim=True)
    # weight = weight.reshape(*weight.shape, 1, 1)
    
    loss = weight * solver.integrate_grid((prd - tar)**2, dimensionless=True, polar_opt=polar_opt)
    if relative:
        loss = loss / (weight * solver.integrate_grid(tar**2, dimensionless=True, polar_opt=polar_opt))
    loss = torch.mean(loss)
    return loss

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# rolls out the FNO and compares to the classical solver
def autoregressive_inference(model,
                             dataset,
                             path_root,
                             nsteps,
                             autoreg_steps=10,
                             nskip=1,
                             plot_channel=0,
                             nics=20):

    model.eval()

    losses = np.zeros(nics)
    fno_times = np.zeros(nics)
    nwp_times = np.zeros(nics)

    for iic in range(nics):
        ic = dataset.solver.random_initial_condition(mach=0.2)
        inp_mean = dataset.inp_mean
        inp_var = dataset.inp_var

        prd = (dataset.solver.spec2grid(ic) - inp_mean) / torch.sqrt(inp_var)
        prd = prd.unsqueeze(0)
        uspec = ic.clone()

        # ML model
        start_time = time.time()
        for i in range(1, autoreg_steps+1):
            # evaluate the ML model
            prd = model(prd)

            if iic == nics-1 and nskip > 0 and i % nskip == 0:

                # do plotting
                fig = plt.figure(figsize=(7.5, 6))
                dataset.solver.plot_griddata(prd[0, plot_channel], fig, vmax=4, vmin=-4)
                plt.savefig(path_root+'_pred_'+str(i//nskip)+'.png')
                plt.clf()

        fno_times[iic] = time.time() - start_time

        # classical model
        start_time = time.time()
        for i in range(1, autoreg_steps+1):
            
            # advance classical model
            uspec = dataset.solver.timestep(uspec, nsteps)
Boris Bonev's avatar
Boris Bonev committed
200

201
202
            if iic == nics-1 and i % nskip == 0 and nskip > 0:
                ref = (dataset.solver.spec2grid(uspec) - inp_mean) / torch.sqrt(inp_var)
Boris Bonev's avatar
Boris Bonev committed
203

204
205
206
207
                fig = plt.figure(figsize=(7.5, 6))
                dataset.solver.plot_griddata(ref[plot_channel], fig, vmax=4, vmin=-4)
                plt.savefig(path_root+'_truth_'+str(i//nskip)+'.png')
                plt.clf()
Boris Bonev's avatar
Boris Bonev committed
208

209
        nwp_times[iic] = time.time() - start_time
Boris Bonev's avatar
Boris Bonev committed
210

211
212
213
214
215
        # ref = (dataset.solver.spec2grid(uspec) - inp_mean) / torch.sqrt(inp_var)
        ref = dataset.solver.spec2grid(uspec)
        prd = prd * torch.sqrt(inp_var) + inp_mean
        losses[iic] = l2loss_sphere(dataset.solver, prd, ref, relative=True).item()
        
Boris Bonev's avatar
Boris Bonev committed
216

217
    return losses, fno_times, nwp_times
Boris Bonev's avatar
Boris Bonev committed
218

219
220
221
222
223
224
# convenience function for logging weights and gradients
def log_weights_and_grads(model, iters=1):
    """
    Helper routine intended for debugging purposes
    """
    root_path = os.path.join(os.path.dirname(__file__), "weights_and_grads")
Boris Bonev's avatar
Boris Bonev committed
225

226
227
    weights_and_grads_fname = os.path.join(root_path, f"weights_and_grads_step{iters:03d}.tar")
    print(weights_and_grads_fname)
Boris Bonev's avatar
Boris Bonev committed
228

229
230
    weights_dict = {k:v for k,v in model.named_parameters()}
    grad_dict = {k:v.grad for k,v in model.named_parameters()}
Boris Bonev's avatar
Boris Bonev committed
231

232
233
    store_dict = {'iteration': iters, 'grads': grad_dict, 'weights': weights_dict}
    torch.save(store_dict, weights_and_grads_fname)
Boris Bonev's avatar
Boris Bonev committed
234

235
236
237
238
239
240
241
242
243
244
245
246
247
# training function
def train_model(model,
                dataloader,
                optimizer,
                gscaler,
                scheduler=None,
                nepochs=20,
                nfuture=0,
                num_examples=256,
                num_valid=8,
                loss_fn='l2',
                enable_amp=False,
                log_grads=0):
Boris Bonev's avatar
Boris Bonev committed
248

249
    train_start = time.time()
Boris Bonev's avatar
Boris Bonev committed
250

251
252
    # count iterations
    iters = 0
Boris Bonev's avatar
Boris Bonev committed
253

254
    for epoch in range(nepochs):
Boris Bonev's avatar
Boris Bonev committed
255

256
257
        # time each epoch
        epoch_start = time.time()
Boris Bonev's avatar
Boris Bonev committed
258

259
260
        dataloader.dataset.set_initial_condition('random')
        dataloader.dataset.set_num_examples(num_examples)
Boris Bonev's avatar
Boris Bonev committed
261

262
263
        # get the solver for its convenience functions
        solver = dataloader.dataset.solver
Boris Bonev's avatar
Boris Bonev committed
264

265
266
267
        # do the training
        acc_loss = 0
        model.train()
Boris Bonev's avatar
Boris Bonev committed
268

269
270
271
        for inp, tar in dataloader:
            
            with amp.autocast(enabled=enable_amp):
Boris Bonev's avatar
Boris Bonev committed
272

273
274
275
                prd = model(inp)
                for _ in range(nfuture):
                    prd = model(prd)
Boris Bonev's avatar
Boris Bonev committed
276

277
278
279
280
281
282
283
284
285
286
287
288
                if loss_fn == 'l2':
                    loss = l2loss_sphere(solver, prd, tar, relative=False)
                elif loss_fn == 'spectral l2':
                    loss = spectral_l2loss_sphere(solver, prd, tar, relative=False)
                elif loss_fn == 'h1':
                    loss = h1loss_sphere(solver, prd, tar, relative=False)
                elif loss_fn == 'spectral':
                    loss = spectral_loss_sphere(solver, prd, tar, relative=False)
                elif loss_fn == 'fluct':
                    loss = fluct_l2loss_sphere(solver, prd, tar, inp, relative=True)
                else:
                    raise NotImplementedError(f'Unknown loss function {loss_fn}')
Boris Bonev's avatar
Boris Bonev committed
289

290
            acc_loss += loss.item() * inp.size(0)
Boris Bonev's avatar
Boris Bonev committed
291

292
293
            optimizer.zero_grad(set_to_none=True)
            gscaler.scale(loss).backward()
Boris Bonev's avatar
Boris Bonev committed
294

295
296
            if log_grads and iters % log_grads == 0:
                log_weights_and_grads(model, iters=iters)
Boris Bonev's avatar
Boris Bonev committed
297

298
299
            gscaler.step(optimizer)
            gscaler.update()
Boris Bonev's avatar
Boris Bonev committed
300

301
            iters += 1
Boris Bonev's avatar
Boris Bonev committed
302

303
        acc_loss = acc_loss / len(dataloader.dataset)
Boris Bonev's avatar
Boris Bonev committed
304

305
306
        dataloader.dataset.set_initial_condition('random')
        dataloader.dataset.set_num_examples(num_valid)
Boris Bonev's avatar
Boris Bonev committed
307

308
309
        # perform validation
        valid_loss = 0
Boris Bonev's avatar
Boris Bonev committed
310
        model.eval()
311
312
313
314
315
316
        with torch.no_grad():
            for inp, tar in dataloader:
                prd = model(inp)
                for _ in range(nfuture):
                    prd = model(prd)
                loss = l2loss_sphere(solver, prd, tar, relative=True)
Boris Bonev's avatar
Boris Bonev committed
317

318
                valid_loss += loss.item() * inp.size(0)
Boris Bonev's avatar
Boris Bonev committed
319

320
        valid_loss = valid_loss / len(dataloader.dataset)
Boris Bonev's avatar
Boris Bonev committed
321

322
323
        if scheduler is not None:
            scheduler.step(valid_loss)
Boris Bonev's avatar
Boris Bonev committed
324

325
326
327
328
329
330
331
        epoch_time = time.time() - epoch_start

        print(f'--------------------------------------------------------------------------------')
        print(f'Epoch {epoch} summary:')
        print(f'time taken: {epoch_time}')
        print(f'accumulated training loss: {acc_loss}')
        print(f'relative validation loss: {valid_loss}')
Boris Bonev's avatar
Boris Bonev committed
332

333
334
335
        if wandb.run is not None:
            current_lr = optimizer.param_groups[0]['lr']
            wandb.log({"loss": acc_loss, "validation loss": valid_loss, "learning rate": current_lr})
Boris Bonev's avatar
Boris Bonev committed
336
337


338
    train_time = time.time() - train_start
Boris Bonev's avatar
Boris Bonev committed
339

340
341
342
    print(f'--------------------------------------------------------------------------------')
    print(f'done. Training took {train_time}.')
    return valid_loss
Boris Bonev's avatar
Boris Bonev committed
343

344
def main(train=True, load_checkpoint=False, enable_amp=False, log_grads=0):
Boris Bonev's avatar
Boris Bonev committed
345

346
347
348
    # set seed
    torch.manual_seed(333)
    torch.cuda.manual_seed(333)
Boris Bonev's avatar
Boris Bonev committed
349

350
351
352
353
    # set device
    device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu')
    if torch.cuda.is_available():
        torch.cuda.set_device(device.index)
Boris Bonev's avatar
Boris Bonev committed
354

355
356
357
358
359
360
361
362
    # 1 hour prediction steps
    dt = 1*3600
    dt_solver = 150
    nsteps = dt//dt_solver
    dataset = PdeDataset(dt=dt, nsteps=nsteps, dims=(256, 512), device=device, normalize=True)
    # There is still an issue with parallel dataloading. Do NOT use it at the moment     
    # dataloader = DataLoader(dataset, batch_size=4, shuffle=True, num_workers=4, persistent_workers=True)
    dataloader = DataLoader(dataset, batch_size=4, shuffle=True, num_workers=0, persistent_workers=False)
Boris Bonev's avatar
Boris Bonev committed
363

364
365
    nlat = dataset.nlat
    nlon = dataset.nlon
Boris Bonev's avatar
Boris Bonev committed
366
367
368
369
370
371
372
373

    def count_parameters(model):
        return sum(p.numel() for p in model.parameters() if p.requires_grad)

    # prepare dicts containing models and corresponding metrics
    models = {}
    metrics = {}

374
375
376
377
378
379
380
381
382
383
384
385
    from torch_harmonics.examples.sfno import SphericalFourierNeuralOperatorNet as SFNO

    models["sfno_sc3_layer4_e16_linskip_nomlp"] = partial(SFNO, spectral_transform='sht', img_size=(nlat, nlon),  grid="equiangular",
                                                          num_layers=4, scale_factor=3, embed_dim=16, operator_type='driscoll-healy',
                                                          big_skip=False, pos_embed=False, use_mlp=False, normalization_layer="none")
    # models["sfno_sc3_layer4_e256_noskip_mlp"]   = partial(SFNO, spectral_transform='sht', img_size=(nlat, nlon),  grid="equiangular",
    #                                                       num_layers=4, scale_factor=3, embed_dim=256, operator_type='driscoll-healy',
    #                                                       big_skip=False, pos_embed=False, use_mlp=True, normalization_layer="none")
    # from torch_harmonics.examples.sfno.models.unet import UNet
    # models['unet_baseline'] = partial(UNet)


Boris Bonev's avatar
Boris Bonev committed
386
387
388
389
390
    # # U-Net if installed
    # from models.unet import UNet
    # models['unet_baseline'] = partial(UNet)

    # SFNO models
391
392
393
394
395
    # models['sfno_sc3_layer4_edim256_linear']    = partial(SFNO, spectral_transform='sht', img_size=(nlat, nlon), grid="equiangular",
    #                                                  num_layers=4, scale_factor=3, embed_dim=256, operator_type='driscoll-healy')
    # # FNO models
    # models['fno_sc3_layer4_edim256_linear']     = partial(SFNO, spectral_transform='fft', img_size=(nlat, nlon), grid="equiangular",
    #                                                  num_layers=4, scale_factor=3, embed_dim=256, operator_type='diagonal')
Boris Bonev's avatar
Boris Bonev committed
396
397
398
399
400
401
402

    # iterate over models and train each model
    root_path = os.path.dirname(__file__)
    for model_name, model_handle in models.items():

        model = model_handle().to(device)

403
404
        print(model)

Boris Bonev's avatar
Boris Bonev committed
405
406
407
408
409
410
411
412
413
414
415
        metrics[model_name] = {}

        num_params = count_parameters(model)
        print(f'number of trainable params: {num_params}')
        metrics[model_name]['num_params'] = num_params

        if load_checkpoint:
            model.load_state_dict(torch.load(os.path.join(root_path, 'checkpoints/'+model_name)))

        # run the training
        if train:
416
            run = wandb.init(project="sfno ablations spherical swe", group=model_name, name=model_name + '_' + str(time.time()), config=model_handle.keywords)
Boris Bonev's avatar
Boris Bonev committed
417
418

            # optimizer:
419
            optimizer = torch.optim.Adam(model.parameters(), lr=3E-3)
Boris Bonev's avatar
Boris Bonev committed
420
421
422
423
424
425
            scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min')
            gscaler = amp.GradScaler(enabled=enable_amp)

            start_time = time.time()

            print(f'Training {model_name}, single step')
426
            train_model(model, dataloader, optimizer, gscaler, scheduler, nepochs=10, loss_fn='l2', enable_amp=enable_amp, log_grads=log_grads)
Boris Bonev's avatar
Boris Bonev committed
427

428
429
430
431
432
433
434
435
            # # multistep training
            # print(f'Training {model_name}, two step')
            # optimizer = torch.optim.Adam(model.parameters(), lr=5E-5)
            # scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min')
            # gscaler = amp.GradScaler(enabled=enable_amp)
            # dataloader.dataset.nsteps = 2 * dt//dt_solver
            # train_model(model, dataloader, optimizer, gscaler, scheduler, nepochs=20, nfuture=1, enable_amp=enable_amp)
            # dataloader.dataset.nsteps = 1 * dt//dt_solver
Boris Bonev's avatar
Boris Bonev committed
436
437
438
439
440
441
442
443
444
445
446
447

            training_time = time.time() - start_time

            run.finish()

            torch.save(model.state_dict(), os.path.join(root_path, 'checkpoints/'+model_name))

        # set seed
        torch.manual_seed(333)
        torch.cuda.manual_seed(333)

        with torch.inference_mode():
448
            losses, fno_times, nwp_times = autoregressive_inference(model, dataset, os.path.join(root_path,'figures/'+model_name), nsteps=nsteps, autoreg_steps=10)
Boris Bonev's avatar
Boris Bonev committed
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
            metrics[model_name]['loss_mean'] = np.mean(losses)
            metrics[model_name]['loss_std'] = np.std(losses)
            metrics[model_name]['fno_time_mean'] = np.mean(fno_times)
            metrics[model_name]['fno_time_std'] = np.std(fno_times)
            metrics[model_name]['nwp_time_mean'] = np.mean(nwp_times)
            metrics[model_name]['nwp_time_std'] = np.std(nwp_times)
            if train:
                metrics[model_name]['training_time'] = training_time

    df = pd.DataFrame(metrics)
    df.to_pickle(os.path.join(root_path, 'output_data/metrics.pkl'))

if __name__ == "__main__":
    import torch.multiprocessing as mp
    mp.set_start_method('forkserver', force=True)

465
    main(train=True, load_checkpoint=False, enable_amp=False, log_grads=0)