@@ -209,7 +209,7 @@ Detailed usage of torch-harmonics, alongside helpful analysis provided in a seri
## Remarks on automatic mixed precision (AMP) support
Note that torch-harmonics uses Fourier transforms from `torch.fft` which in turn uses kernels from the optimized `cuFFT` library. This library supports fourier transforms of `float32` and `float64` (i.e. `single` and `double` precision) tensors for all input sizes. For `float16` (i.e. `half` precision) and `bfloat16` inputs however, the dimensions which are transformed are restricted to powers of two. Since data is converted to one of these reduced precision floating point formats when `torch.cuda.amp.autocast` is used, torch-harmonics will issue an error when the input shapes are not powers of two. For these cases, we recommend disabling autocast for the harmonics transform specifically:
Note that torch-harmonics uses Fourier transforms from `torch.fft` which in turn uses kernels from the optimized `cuFFT` library. This library supports fourier transforms of `float32` and `float64` (i.e. `single` and `double` precision) tensors for all input sizes. For `float16` (i.e. `half` precision) and `bfloat16` inputs however, the dimensions which are transformed are restricted to powers of two. Since data is converted to one of these reduced precision floating point formats when `torch.autocast` is used, torch-harmonics will issue an error when the input shapes are not powers of two. For these cases, we recommend disabling autocast for the harmonics transform specifically: