test_convolution.py 16.7 KB
Newer Older
Boris Bonev's avatar
Boris Bonev committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import unittest
33
from parameterized import parameterized, parameterized_class
Boris Bonev's avatar
Boris Bonev committed
34
35
36
37
38
from functools import partial
import math
import numpy as np
import torch
from torch.autograd import gradcheck
Boris Bonev's avatar
Boris Bonev committed
39
from torch_harmonics import quadrature, DiscreteContinuousConvS2, DiscreteContinuousConvTransposeS2
Boris Bonev's avatar
Boris Bonev committed
40

Thorsten Kurth's avatar
Thorsten Kurth committed
41
from torch_harmonics.quadrature import _precompute_grid, _precompute_latitudes, _precompute_longitudes
Thorsten Kurth's avatar
Thorsten Kurth committed
42
from torch_harmonics.convolution import _precompute_convolution_tensor_s2
43

44
45
46
47
48
_devices = [(torch.device("cpu"),)]
if torch.cuda.is_available():
    _devices.append((torch.device("cuda"),))


49
def _normalize_convolution_tensor_dense(psi, quad_weights, transpose_normalization=False, basis_norm_mode="none", merge_quadrature=False, eps=1e-9):
Andrea Paris's avatar
Andrea Paris committed
50
    """Discretely normalizes the convolution tensor."""
51

Boris Bonev's avatar
Boris Bonev committed
52
    kernel_size, nlat_out, nlon_out, nlat_in, nlon_in = psi.shape
53
54
55
56
57
58
    correction_factor = nlon_out / nlon_in

    if basis_norm_mode == "individual":
        if transpose_normalization:
            # the normalization is not quite symmetric due to the compressed way psi is stored in the main code
            # look at the normalization code in the actual implementation
Boris Bonev's avatar
Boris Bonev committed
59
            psi_norm = torch.sum(quad_weights.reshape(1, -1, 1, 1, 1) * psi[:, :, :1].abs(), dim=(1, 4), keepdim=True)
60
        else:
Boris Bonev's avatar
Boris Bonev committed
61
            psi_norm = torch.sum(quad_weights.reshape(1, 1, 1, -1, 1) * psi.abs(), dim=(3, 4), keepdim=True)
62
63
64
65
66

    elif basis_norm_mode == "mean":
        if transpose_normalization:
            # the normalization is not quite symmetric due to the compressed way psi is stored in the main code
            # look at the normalization code in the actual implementation
Boris Bonev's avatar
Boris Bonev committed
67
            psi_norm = torch.sum(quad_weights.reshape(1, -1, 1, 1, 1) * psi[:, :, :1].abs(), dim=(1, 4), keepdim=True)
68
69
            psi_norm = psi_norm.mean(dim=3, keepdim=True)
        else:
Boris Bonev's avatar
Boris Bonev committed
70
            psi_norm = torch.sum(quad_weights.reshape(1, 1, 1, -1, 1) * psi.abs(), dim=(3, 4), keepdim=True)
71
72
73
74
75
            psi_norm = psi_norm.mean(dim=1, keepdim=True)
    elif basis_norm_mode == "none":
        psi_norm = 1.0
    else:
        raise ValueError(f"Unknown basis normalization mode {basis_norm_mode}.")
Boris Bonev's avatar
Boris Bonev committed
76
77

    if transpose_normalization:
78
        if merge_quadrature:
79
            psi = quad_weights.reshape(1, -1, 1, 1, 1) * psi / correction_factor
Boris Bonev's avatar
Boris Bonev committed
80
    else:
81
82
        if merge_quadrature:
            psi = quad_weights.reshape(1, 1, 1, -1, 1) * psi
Boris Bonev's avatar
Boris Bonev committed
83
84
85
86

    return psi / (psi_norm + eps)


87
88
89
def _precompute_convolution_tensor_dense(
    in_shape,
    out_shape,
90
    filter_basis,
91
92
93
    grid_in="equiangular",
    grid_out="equiangular",
    theta_cutoff=0.01 * math.pi,
94
    theta_eps=1e-3,
95
    transpose_normalization=False,
96
    basis_norm_mode="none",
97
98
    merge_quadrature=False,
):
99
"""Helper routine to compute the convolution Tensor in a dense fashion."""
Boris Bonev's avatar
Boris Bonev committed
100
101
102
    assert len(in_shape) == 2
    assert len(out_shape) == 2

103
    kernel_size = filter_basis.kernel_size
Boris Bonev's avatar
Boris Bonev committed
104
105
106
107

    nlat_in, nlon_in = in_shape
    nlat_out, nlon_out = out_shape

108
109
    lats_in, win = quadrature._precompute_latitudes(nlat_in, grid=grid_in)
    lats_out, wout = quadrature._precompute_latitudes(nlat_out, grid=grid_out)
Boris Bonev's avatar
Boris Bonev committed
110

Thorsten Kurth's avatar
Thorsten Kurth committed
111
112
113
    # compute the phi differences.
    lons_in = _precompute_longitudes(nlon_in)
    lons_out = _precompute_longitudes(nlon_out)
114
115
116

    # effective theta cutoff if multiplied with a fudge factor to avoid aliasing with grid width (especially near poles)
    theta_cutoff_eff = (1.0 + theta_eps) * theta_cutoff
Boris Bonev's avatar
Boris Bonev committed
117

118
119
    # compute quadrature weights that will be merged into the Psi tensor
    if transpose_normalization:
Thorsten Kurth's avatar
Thorsten Kurth committed
120
        quad_weights = wout.reshape(-1, 1) / nlon_in / 2.0
121
    else:
Thorsten Kurth's avatar
Thorsten Kurth committed
122
        quad_weights = win.reshape(-1, 1) / nlon_in / 2.0
123

124
    # array for accumulating non-zero indices
125
    out = torch.zeros(kernel_size, nlat_out, nlon_out, nlat_in, nlon_in, dtype=torch.float64, device=lons_in.device)
Boris Bonev's avatar
Boris Bonev committed
126
127
128
129
130
131
132
133
134
135
136
137

    for t in range(nlat_out):
        for p in range(nlon_out):
            alpha = -lats_out[t]
            beta = lons_in - lons_out[p]
            gamma = lats_in.reshape(-1, 1)

            # compute latitude of the rotated position
            z = -torch.cos(beta) * torch.sin(alpha) * torch.sin(gamma) + torch.cos(alpha) * torch.cos(gamma)

            # compute cartesian coordinates of the rotated position
            x = torch.cos(alpha) * torch.cos(beta) * torch.sin(gamma) + torch.cos(gamma) * torch.sin(alpha)
138
            y = torch.sin(beta) * torch.sin(gamma) * torch.ones_like(alpha)
Boris Bonev's avatar
Boris Bonev committed
139
140
141
142
143
144
145
146
147

            # normalize instead of clipping to ensure correct range
            norm = torch.sqrt(x * x + y * y + z * z)
            x = x / norm
            y = y / norm
            z = z / norm

            # compute spherical coordinates
            theta = torch.arccos(z)
148
149
            phi = torch.arctan2(y, x)
            phi = torch.where(phi < 0.0, phi + 2 * torch.pi, phi)
Boris Bonev's avatar
Boris Bonev committed
150
151

            # find the indices where the rotated position falls into the support of the kernel
152
            iidx, vals = filter_basis.compute_support_vals(theta, phi, r_cutoff=theta_cutoff_eff)
153
            out[iidx[:, 0], t, p, iidx[:, 1], iidx[:, 2]] = vals
Boris Bonev's avatar
Boris Bonev committed
154

155
    # take care of normalization and cast to float
156
157
158
    out = _normalize_convolution_tensor_dense(
        out, quad_weights=quad_weights, transpose_normalization=transpose_normalization, basis_norm_mode=basis_norm_mode, merge_quadrature=merge_quadrature
    )
159
    out = out.to(dtype=torch.float32)
Boris Bonev's avatar
Boris Bonev committed
160

Boris Bonev's avatar
Boris Bonev committed
161
162
163
    return out


164
@parameterized_class(("device"), _devices)
Boris Bonev's avatar
Boris Bonev committed
165
class TestDiscreteContinuousConvolution(unittest.TestCase):
166
    """Test the discrete-continuous convolution module (CPU/CUDA if available)."""
apaaris's avatar
apaaris committed
167
    
Boris Bonev's avatar
Boris Bonev committed
168
    def setUp(self):
169
170
        torch.manual_seed(333)
        if self.device.type == "cuda":
171
            torch.cuda.manual_seed(333)
Boris Bonev's avatar
Boris Bonev committed
172

Boris Bonev's avatar
Boris Bonev committed
173
174
175
    @parameterized.expand(
        [
            # regular convolution
Thorsten Kurth's avatar
Thorsten Kurth committed
176
177
178
179
180
181
182
183
184
185
186
            [8, 4, 2, (16, 32), (16, 32), (3), "piecewise linear", "mean", "equiangular", "equiangular", False, 1e-4, False],
            [8, 4, 2, (16, 32), (8, 16), (3), "piecewise linear", "mean", "equiangular", "equiangular", False, 1e-4, False],
            [8, 4, 2, (24, 48), (12, 24), (3, 3), "piecewise linear", "mean", "equiangular", "equiangular", False, 1e-4, False],
            [8, 4, 2, (24, 48), (12, 24), (4, 3), "piecewise linear", "mean", "equiangular", "equiangular", False, 1e-4, False],
            [8, 4, 2, (24, 48), (12, 24), (2, 2), "morlet", "mean", "equiangular", "equiangular", False, 1e-4, False],
            [8, 4, 2, (24, 48), (12, 24), (3), "zernike", "mean", "equiangular", "equiangular", False, 1e-4, False],
            [8, 4, 2, (16, 24), (8, 8), (3), "piecewise linear", "mean", "equiangular", "equiangular", False, 1e-4, False],
            [8, 4, 2, (18, 36), (6, 12), (7), "piecewise linear", "mean", "equiangular", "equiangular", False, 1e-4, False],
            [8, 4, 2, (16, 32), (8, 16), (5), "piecewise linear", "mean", "equiangular", "legendre-gauss", False, 1e-4, False],
            [8, 4, 2, (16, 32), (8, 16), (5), "piecewise linear", "mean", "legendre-gauss", "equiangular", False, 1e-4, False],
            [8, 4, 2, (16, 32), (8, 16), (5), "piecewise linear", "mean", "legendre-gauss", "legendre-gauss", False, 1e-4, False],
Boris Bonev's avatar
Boris Bonev committed
187
            # transpose convolution
Thorsten Kurth's avatar
Thorsten Kurth committed
188
189
190
191
192
193
194
195
196
197
198
            [8, 4, 2, (16, 32), (16, 32), (3), "piecewise linear", "mean", "equiangular", "equiangular", True, 1e-4, False],
            [8, 4, 2, (8, 16), (16, 32), (5), "piecewise linear", "mean", "equiangular", "equiangular", True, 1e-4, False],
            [8, 4, 2, (12, 24), (24, 48), (3, 3), "piecewise linear", "mean", "equiangular", "equiangular", True, 1e-4, False],
            [8, 4, 2, (12, 24), (24, 48), (4, 3), "piecewise linear", "mean", "equiangular", "equiangular", True, 1e-4, False],
            [8, 4, 2, (12, 24), (24, 48), (2, 2), "morlet", "mean", "equiangular", "equiangular", True, 1e-4, False],
            [8, 4, 2, (12, 24), (24, 48), (3), "zernike", "mean", "equiangular", "equiangular", True, 1e-4, False],
            [8, 4, 2, (8, 8), (16, 24), (3), "piecewise linear", "mean", "equiangular", "equiangular", True, 1e-4, False],
            [8, 4, 2, (6, 12), (18, 36), (7), "piecewise linear", "mean", "equiangular", "equiangular", True, 1e-4, False],
            [8, 4, 2, (8, 16), (16, 32), (5), "piecewise linear", "mean", "equiangular", "legendre-gauss", True, 1e-4, False],
            [8, 4, 2, (8, 16), (16, 32), (5), "piecewise linear", "mean", "legendre-gauss", "equiangular", True, 1e-4, False],
            [8, 4, 2, (8, 16), (16, 32), (5), "piecewise linear", "mean", "legendre-gauss", "legendre-gauss", True, 1e-4, False],
Thorsten Kurth's avatar
Thorsten Kurth committed
199
200
        ],
        skip_on_empty=True,
Boris Bonev's avatar
Boris Bonev committed
201
    )
Thorsten Kurth's avatar
Thorsten Kurth committed
202
    def test_forward_backward(
Boris Bonev's avatar
Boris Bonev committed
203
204
205
206
207
208
209
        self,
        batch_size,
        in_channels,
        out_channels,
        in_shape,
        out_shape,
        kernel_shape,
210
211
        basis_type,
        basis_norm_mode,
Boris Bonev's avatar
Boris Bonev committed
212
213
214
215
        grid_in,
        grid_out,
        transpose,
        tol,
Thorsten Kurth's avatar
Thorsten Kurth committed
216
        verbose,
Boris Bonev's avatar
Boris Bonev committed
217
    ):
Thorsten Kurth's avatar
Thorsten Kurth committed
218
219
220
221

        if verbose:
            print(f"Testing DISCO convolution on {in_shape[0]}x{in_shape[1]} {grid_in} grid to {out_shape[0]}x{out_shape[1]} {grid_out} grid on {self.device.type} device")
        
Boris Bonev's avatar
Boris Bonev committed
222
223
224
        nlat_in, nlon_in = in_shape
        nlat_out, nlon_out = out_shape

Thorsten Kurth's avatar
Thorsten Kurth committed
225
226
227
228
        if isinstance(kernel_shape, int):
            theta_cutoff = (kernel_shape + 1) * torch.pi / float(nlat_in - 1)
        else:
            theta_cutoff = (kernel_shape[0] + 1) * torch.pi / float(nlat_in - 1)
Boris Bonev's avatar
Boris Bonev committed
229

Boris Bonev's avatar
Boris Bonev committed
230
        Conv = DiscreteContinuousConvTransposeS2 if transpose else DiscreteContinuousConvS2
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        conv = Conv(
            in_channels,
            out_channels,
            in_shape,
            out_shape,
            kernel_shape,
            basis_type=basis_type,
            basis_norm_mode=basis_norm_mode,
            groups=1,
            grid_in=grid_in,
            grid_out=grid_out,
            bias=False,
            theta_cutoff=theta_cutoff,
        ).to(self.device)

        filter_basis = conv.filter_basis
Boris Bonev's avatar
Boris Bonev committed
247
248

        if transpose:
249
            psi_dense = _precompute_convolution_tensor_dense(
250
251
252
253
254
255
256
257
258
                out_shape,
                in_shape,
                filter_basis,
                grid_in=grid_out,
                grid_out=grid_in,
                theta_cutoff=theta_cutoff,
                transpose_normalization=transpose,
                basis_norm_mode=basis_norm_mode,
                merge_quadrature=True,
259
            ).to(self.device)
Boris Bonev's avatar
Boris Bonev committed
260
261
262
263

            psi = torch.sparse_coo_tensor(conv.psi_idx, conv.psi_vals, size=(conv.kernel_size, conv.nlat_in, conv.nlat_out * conv.nlon_out)).to_dense()

            self.assertTrue(torch.allclose(psi, psi_dense[:, :, 0].reshape(-1, nlat_in, nlat_out * nlon_out)))
Boris Bonev's avatar
Boris Bonev committed
264
        else:
265
            psi_dense = _precompute_convolution_tensor_dense(
266
267
268
269
270
271
272
273
274
                in_shape,
                out_shape,
                filter_basis,
                grid_in=grid_in,
                grid_out=grid_out,
                theta_cutoff=theta_cutoff,
                transpose_normalization=transpose,
                basis_norm_mode=basis_norm_mode,
                merge_quadrature=True,
275
            ).to(self.device)
Boris Bonev's avatar
Boris Bonev committed
276

Boris Bonev's avatar
Boris Bonev committed
277
278
            psi = torch.sparse_coo_tensor(conv.psi_idx, conv.psi_vals, size=(conv.kernel_size, conv.nlat_out, conv.nlat_in * conv.nlon_in)).to_dense()

Boris Bonev's avatar
Boris Bonev committed
279
            self.assertTrue(torch.allclose(psi, psi_dense[:, :, 0].reshape(-1, nlat_out, nlat_in * nlon_in)))
Boris Bonev's avatar
Boris Bonev committed
280
281

        # create a copy of the weight
282
283
284
285
        w_ref = torch.empty_like(conv.weight)
        with torch.no_grad():
            w_ref.copy_(conv.weight)
        w_ref.requires_grad = True
Boris Bonev's avatar
Boris Bonev committed
286
287

        # create an input signal
288
289
290
291
292
293
294
295
        x = torch.randn(batch_size, in_channels, *in_shape, device=self.device)

        # FWD and BWD pass
        x.requires_grad = True
        y = conv(x)
        grad_input = torch.randn_like(y)
        y.backward(grad_input)
        x_grad = x.grad.clone()
Boris Bonev's avatar
Boris Bonev committed
296
297
298

        # perform the reference computation
        x_ref = x.clone().detach()
299
        x_ref.requires_grad = True
Boris Bonev's avatar
Boris Bonev committed
300
301
        if transpose:
            y_ref = torch.einsum("oif,biqr->bofqr", w_ref, x_ref)
302
            y_ref = torch.einsum("fqrtp,bofqr->botp", psi_dense, y_ref)
Boris Bonev's avatar
Boris Bonev committed
303
        else:
304
            y_ref = torch.einsum("ftpqr,bcqr->bcftp", psi_dense, x_ref)
Boris Bonev's avatar
Boris Bonev committed
305
            y_ref = torch.einsum("oif,biftp->botp", w_ref, y_ref)
306
        y_ref.backward(grad_input)
Boris Bonev's avatar
Boris Bonev committed
307
308
        x_ref_grad = x_ref.grad.clone()

Boris Bonev's avatar
Boris Bonev committed
309
310
311
        # compare results
        self.assertTrue(torch.allclose(y, y_ref, rtol=tol, atol=tol))

Boris Bonev's avatar
Boris Bonev committed
312
        # compare
313
        self.assertTrue(torch.allclose(x_grad, x_ref_grad, rtol=tol, atol=tol))
Boris Bonev's avatar
Boris Bonev committed
314
315
        self.assertTrue(torch.allclose(conv.weight.grad, w_ref.grad, rtol=tol, atol=tol))

316
317
318
319
320
321
    @parameterized.expand(
        [
            [8, 4, 2, (16, 32), (16, 32), (3), "piecewise linear", "mean", "equiangular", "equiangular", False, 1e-4, False],
            [8, 4, 2, (16, 32), (8, 16), (5), "piecewise linear", "mean", "legendre-gauss", "legendre-gauss", False, 1e-4, False],
            [8, 4, 2, (16, 32), (16, 32), (3), "piecewise linear", "mean", "equiangular", "equiangular", True, 1e-4, False],
            [8, 4, 2, (8, 16), (16, 32), (5), "piecewise linear", "mean", "legendre-gauss", "legendre-gauss", True, 1e-4, False],
Thorsten Kurth's avatar
Thorsten Kurth committed
322
323
        ],
        skip_on_empty=True,
324
325
326
    )
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA is not available")
    def test_device_instantiation(self, batch_size, in_channels, out_channels, in_shape, out_shape, kernel_shape, basis_type, basis_norm_mode, grid_in, grid_out, transpose, tol, verbose):
Thorsten Kurth's avatar
Thorsten Kurth committed
327

328
329
330
331
332
333
334
335
        nlat_in, nlon_in = in_shape
        nlat_out, nlon_out = out_shape

        if isinstance(kernel_shape, int):
            theta_cutoff = (kernel_shape + 1) * torch.pi / float(nlat_in - 1)
        else:
            theta_cutoff = (kernel_shape[0] + 1) * torch.pi / float(nlat_in - 1)

Thorsten Kurth's avatar
Thorsten Kurth committed
336
        # get handle
337
        Conv = DiscreteContinuousConvTransposeS2 if transpose else DiscreteContinuousConvS2
Thorsten Kurth's avatar
Thorsten Kurth committed
338
339

        # init on cpu
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
        conv_host = Conv(
            in_channels,
            out_channels,
            in_shape,
            out_shape,
            kernel_shape,
            basis_type=basis_type,
            basis_norm_mode=basis_norm_mode,
            groups=1,
            grid_in=grid_in,
            grid_out=grid_out,
            bias=False,
            theta_cutoff=theta_cutoff,
        )

Thorsten Kurth's avatar
Thorsten Kurth committed
355
356
357
        #torch.set_default_device(self.device)
        with torch.device(self.device):
            conv_device = Conv(
358
359
360
361
362
363
364
365
366
367
368
369
370
371
                in_channels,
                out_channels,
                in_shape,
                out_shape,
                kernel_shape,
                basis_type=basis_type,
                basis_norm_mode=basis_norm_mode,
                groups=1,
                grid_in=grid_in,
                grid_out=grid_out,
                bias=False,
                theta_cutoff=theta_cutoff,
            )

Thorsten Kurth's avatar
Thorsten Kurth committed
372
373
        # since we specified the device specifier everywhere, it should always
        # use the cpu and it should be the same everywhere
374
375
376
377
378
379
        self.assertTrue(torch.allclose(conv_host.psi_col_idx.cpu(), conv_device.psi_col_idx.cpu()))
        self.assertTrue(torch.allclose(conv_host.psi_row_idx.cpu(), conv_device.psi_row_idx.cpu()))
        self.assertTrue(torch.allclose(conv_host.psi_roff_idx.cpu(), conv_device.psi_roff_idx.cpu()))
        self.assertTrue(torch.allclose(conv_host.psi_vals.cpu(), conv_device.psi_vals.cpu()))
        self.assertTrue(torch.allclose(conv_host.psi_idx.cpu(), conv_device.psi_idx.cpu()))

Boris Bonev's avatar
Boris Bonev committed
380

Boris Bonev's avatar
Boris Bonev committed
381
382
if __name__ == "__main__":
    unittest.main()