test_convolution.py 10.5 KB
Newer Older
Boris Bonev's avatar
Boris Bonev committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import unittest
from parameterized import parameterized
from functools import partial
import math
import numpy as np
import torch
from torch.autograd import gradcheck
from torch_harmonics import *


def _compute_vals_isotropic(theta: torch.Tensor, phi: torch.Tensor, ntheta: int, theta_cutoff: float):
    """
    helper routine to compute the values of the isotropic kernel densely
    """

    # compute the support
    dtheta = (theta_cutoff - 0.0) / ntheta
    ikernel = torch.arange(ntheta).reshape(-1, 1, 1)
    itheta = ikernel * dtheta

    norm_factor = (
        2
        * math.pi
        * (
            1
            - math.cos(theta_cutoff - dtheta)
            + math.cos(theta_cutoff - dtheta)
            + (math.sin(theta_cutoff - dtheta) - math.sin(theta_cutoff)) / dtheta
        )
    )

    vals = torch.where(
        ((theta - itheta).abs() <= dtheta) & (theta <= theta_cutoff),
        (1 - (theta - itheta).abs() / dtheta) / norm_factor,
        0,
    )
    return vals

def _compute_vals_anisotropic(theta: torch.Tensor, phi: torch.Tensor, ntheta: int, nphi: int, theta_cutoff: float):
    """
    helper routine to compute the values of the anisotropic kernel densely
    """

    # compute the support
    dtheta = (theta_cutoff - 0.0) / ntheta
    dphi = 2.0 * math.pi / nphi
    kernel_size = (ntheta-1)*nphi + 1
    ikernel = torch.arange(kernel_size).reshape(-1, 1, 1)
    itheta = ((ikernel - 1) // nphi + 1) * dtheta
    iphi = ((ikernel - 1) % nphi) * dphi

    norm_factor = 2 * math.pi * (1 - math.cos(theta_cutoff - dtheta) + math.cos(theta_cutoff - dtheta) + (math.sin(theta_cutoff - dtheta) - math.sin(theta_cutoff)) / dtheta)

    # find the indices where the rotated position falls into the support of the kernel
    cond_theta = ((theta - itheta).abs() <= dtheta) & (theta <= theta_cutoff)
    cond_phi = ((phi - iphi).abs() <= dphi) | ((2*math.pi - (phi - iphi).abs()) <= dphi)
    theta_vals = torch.where(cond_theta, (1 - (theta - itheta).abs() / dtheta) / norm_factor, 0.0)
    phi_vals = torch.where(cond_phi, (1 - torch.minimum((phi - iphi).abs(), (2*math.pi - (phi - iphi).abs()) ) / dphi ), 0.0)
    vals = torch.where(ikernel > 0, theta_vals * phi_vals, theta_vals)
    return vals

def _precompute_convolution_tensor_dense(
    in_shape, out_shape, kernel_shape, grid_in="equiangular", grid_out="equiangular", theta_cutoff=0.01 * math.pi
):
    """
    Helper routine to compute the convolution Tensor in a dense fashion
    """

    assert len(in_shape) == 2
    assert len(out_shape) == 2

    if len(kernel_shape) == 1:
        kernel_handle = partial(_compute_vals_isotropic, ntheta=kernel_shape[0], theta_cutoff=theta_cutoff)
        kernel_size = kernel_shape[0]
    elif len(kernel_shape) == 2:
        kernel_handle = partial(_compute_vals_anisotropic, ntheta=kernel_shape[0], nphi=kernel_shape[1], theta_cutoff=theta_cutoff)
        kernel_size = (kernel_shape[0]-1)*kernel_shape[1] + 1
    else:
        raise ValueError("kernel_shape should be either one- or two-dimensional.")

    nlat_in, nlon_in = in_shape
    nlat_out, nlon_out = out_shape

    lats_in, _ = quadrature._precompute_latitudes(nlat_in, grid=grid_in)
    lats_in = torch.from_numpy(lats_in).float()
    lats_out, _ = quadrature._precompute_latitudes(nlat_out, grid=grid_out)
    lats_out = torch.from_numpy(lats_out).float()  # array for accumulating non-zero indices

    # compute the phi differences. We need to make the linspace exclusive to not double the last point
    lons_in = torch.linspace(0, 2 * math.pi, nlon_in + 1)[:-1]
    lons_out = torch.linspace(0, 2 * math.pi, nlon_out + 1)[:-1]

    out = torch.zeros(kernel_size, nlat_out, nlon_out, nlat_in, nlon_in)

    for t in range(nlat_out):
        for p in range(nlon_out):
            alpha = -lats_out[t]
            beta = lons_in - lons_out[p]
            gamma = lats_in.reshape(-1, 1)

            # compute latitude of the rotated position
            z = -torch.cos(beta) * torch.sin(alpha) * torch.sin(gamma) + torch.cos(alpha) * torch.cos(gamma)

            # compute cartesian coordinates of the rotated position
            x = torch.cos(alpha) * torch.cos(beta) * torch.sin(gamma) + torch.cos(gamma) * torch.sin(alpha)
            y = torch.sin(beta) * torch.sin(gamma)

            # normalize instead of clipping to ensure correct range
            norm = torch.sqrt(x * x + y * y + z * z)
            x = x / norm
            y = y / norm
            z = z / norm

            # compute spherical coordinates
            theta = torch.arccos(z)
            phi = torch.arctan2(y, x) + torch.pi

            # find the indices where the rotated position falls into the support of the kernel
            out[:, t, p, :, :] = kernel_handle(theta, phi)

    return out


class TestDiscreteContinuousConvolution(unittest.TestCase):
    def setUp(self):
        if torch.cuda.is_available():
            self.device = torch.device("cuda")
        else:
            self.device = torch.device("cpu")

        self.device = torch.device("cpu")

    @parameterized.expand(
        [
            # regular convolution
            [8, 4, 2, (16, 32), (16, 32), [2], "equiangular", "equiangular", False, 1e-5],
            [8, 4, 2, (16, 32), (8, 16), [3], "equiangular", "equiangular", False, 1e-5],
            [8, 4, 2, (16, 32), (8, 16), [2, 3], "equiangular", "equiangular", False, 1e-5],
            [8, 4, 2, (18, 36), (6, 12), [4], "equiangular", "equiangular", False, 1e-5],
            [8, 4, 2, (16, 32), (8, 16), [3], "equiangular", "legendre-gauss", False, 1e-5],
            [8, 4, 2, (16, 32), (8, 16), [3], "legendre-gauss", "equiangular", False, 1e-5],
            [8, 4, 2, (16, 32), (8, 16), [3], "legendre-gauss", "legendre-gauss", False, 1e-5],
            # transpose convolution
            [8, 4, 2, (16, 32), (16, 32), [2], "equiangular", "equiangular", True, 1e-5],
            [8, 4, 2, (8, 16), (16, 32), [3], "equiangular", "equiangular", True, 1e-5],
            [8, 4, 2, (8, 16), (16, 32), [2, 3], "equiangular", "equiangular", True, 1e-5],
            [8, 4, 2, (6, 12), (18, 36), [4], "equiangular", "equiangular", True, 1e-5],
            [8, 4, 2, (8, 16), (16, 32), [3], "equiangular", "legendre-gauss", True, 1e-5],
            [8, 4, 2, (8, 16), (16, 32), [3], "legendre-gauss", "equiangular", True, 1e-5],
            [8, 4, 2, (8, 16), (16, 32), [3], "legendre-gauss", "legendre-gauss", True, 1e-5],
        ]
    )
    def test_disco_convolution(
        self,
        batch_size,
        in_channels,
        out_channels,
        in_shape,
        out_shape,
        kernel_shape,
        grid_in,
        grid_out,
        transpose,
        tol,
    ):
        Conv = DiscreteContinuousConvTransposeS2 if transpose else DiscreteContinuousConvS2
        conv = Conv(
            in_channels,
            out_channels,
            in_shape,
            out_shape,
            kernel_shape,
            groups=1,
            grid_in=grid_in,
            grid_out=grid_out,
            bias=False,
        ).to(self.device)

        nlat_in, nlon_in = in_shape
        nlat_out, nlon_out = out_shape

        theta_cutoff = (kernel_shape[0] + 1) * torch.pi / float(nlat_in - 1)

        if transpose:
            psi_dense = _precompute_convolution_tensor_dense(
                out_shape, in_shape, kernel_shape, grid_in=grid_out, grid_out=grid_in, theta_cutoff=theta_cutoff
            ).to(self.device)
        else:
            psi_dense = _precompute_convolution_tensor_dense(
                in_shape, out_shape, kernel_shape, grid_in=grid_in, grid_out=grid_out, theta_cutoff=theta_cutoff
            ).to(self.device)

            self.assertTrue(
                torch.allclose(conv.psi.to_dense(), psi_dense[:, :, 0].reshape(-1, nlat_out, nlat_in * nlon_in))
            )

        # create a copy of the weight
        w_ref = conv.weight.detach().clone()
        w_ref.requires_grad_(True)

        # create an input signal
        torch.manual_seed(333)
        x = torch.randn(batch_size, in_channels, *in_shape, requires_grad=True).to(self.device)

        # perform the reference computation
        x_ref = x.clone().detach()
        x_ref.requires_grad_(True)
        if transpose:
            y_ref = torch.einsum("oif,biqr->bofqr", w_ref, x_ref)
            y_ref = torch.einsum("fqrtp,bofqr->botp", psi_dense, y_ref * conv.quad_weights)
        else:
            y_ref = torch.einsum("ftpqr,bcqr->bcftp", psi_dense, x_ref * conv.quad_weights)
            y_ref = torch.einsum("oif,biftp->botp", w_ref, y_ref)

        # use the convolution module
        y = conv(x)

        # compare results
        self.assertTrue(torch.allclose(y, y_ref, rtol=tol, atol=tol))

        # compute gradients and compare results
        grad_input = torch.randn_like(y)
        y_ref.backward(grad_input)
        y.backward(grad_input)

        # compare 
        self.assertTrue(torch.allclose(x.grad, x_ref.grad, rtol=tol, atol=tol))
        self.assertTrue(torch.allclose(conv.weight.grad, w_ref.grad, rtol=tol, atol=tol))

if __name__ == "__main__":
    unittest.main()