test_convolution.py 13.8 KB
Newer Older
Boris Bonev's avatar
Boris Bonev committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import unittest
from parameterized import parameterized
from functools import partial
import math
import numpy as np
import torch
from torch.autograd import gradcheck
Boris Bonev's avatar
Boris Bonev committed
39
from torch_harmonics import quadrature, DiscreteContinuousConvS2, DiscreteContinuousConvTransposeS2
Boris Bonev's avatar
Boris Bonev committed
40

Thorsten Kurth's avatar
Thorsten Kurth committed
41
from torch_harmonics.quadrature import _precompute_grid, _precompute_latitudes, _precompute_longitudes
Boris Bonev's avatar
Boris Bonev committed
42

43

44
def _normalize_convolution_tensor_dense(psi, quad_weights, transpose_normalization=False, basis_norm_mode="none", merge_quadrature=False, eps=1e-9):
Boris Bonev's avatar
Boris Bonev committed
45
46
47
48
49
    """
    Discretely normalizes the convolution tensor.
    """

    kernel_size, nlat_out, nlon_out, nlat_in, nlon_in = psi.shape
50
51
52
53
54
55
    correction_factor = nlon_out / nlon_in

    if basis_norm_mode == "individual":
        if transpose_normalization:
            # the normalization is not quite symmetric due to the compressed way psi is stored in the main code
            # look at the normalization code in the actual implementation
Boris Bonev's avatar
Boris Bonev committed
56
            psi_norm = torch.sum(quad_weights.reshape(1, -1, 1, 1, 1) * psi[:, :, :1].abs(), dim=(1, 4), keepdim=True)
57
        else:
Boris Bonev's avatar
Boris Bonev committed
58
            psi_norm = torch.sum(quad_weights.reshape(1, 1, 1, -1, 1) * psi.abs(), dim=(3, 4), keepdim=True)
59
60
61
62
63

    elif basis_norm_mode == "mean":
        if transpose_normalization:
            # the normalization is not quite symmetric due to the compressed way psi is stored in the main code
            # look at the normalization code in the actual implementation
Boris Bonev's avatar
Boris Bonev committed
64
            psi_norm = torch.sum(quad_weights.reshape(1, -1, 1, 1, 1) * psi[:, :, :1].abs(), dim=(1, 4), keepdim=True)
65
66
            psi_norm = psi_norm.mean(dim=3, keepdim=True)
        else:
Boris Bonev's avatar
Boris Bonev committed
67
            psi_norm = torch.sum(quad_weights.reshape(1, 1, 1, -1, 1) * psi.abs(), dim=(3, 4), keepdim=True)
68
69
70
71
72
            psi_norm = psi_norm.mean(dim=1, keepdim=True)
    elif basis_norm_mode == "none":
        psi_norm = 1.0
    else:
        raise ValueError(f"Unknown basis normalization mode {basis_norm_mode}.")
Boris Bonev's avatar
Boris Bonev committed
73
74

    if transpose_normalization:
75
        if merge_quadrature:
76
            psi = quad_weights.reshape(1, -1, 1, 1, 1) * psi / correction_factor
Boris Bonev's avatar
Boris Bonev committed
77
    else:
78
79
        if merge_quadrature:
            psi = quad_weights.reshape(1, 1, 1, -1, 1) * psi
Boris Bonev's avatar
Boris Bonev committed
80
81
82
83

    return psi / (psi_norm + eps)


84
85
86
def _precompute_convolution_tensor_dense(
    in_shape,
    out_shape,
87
    filter_basis,
88
89
90
    grid_in="equiangular",
    grid_out="equiangular",
    theta_cutoff=0.01 * math.pi,
91
    theta_eps=1e-3,
92
    transpose_normalization=False,
93
    basis_norm_mode="none",
94
95
    merge_quadrature=False,
):
Boris Bonev's avatar
Boris Bonev committed
96
97
98
99
100
101
102
    """
    Helper routine to compute the convolution Tensor in a dense fashion
    """

    assert len(in_shape) == 2
    assert len(out_shape) == 2

103
    kernel_size = filter_basis.kernel_size
Boris Bonev's avatar
Boris Bonev committed
104
105
106
107

    nlat_in, nlon_in = in_shape
    nlat_out, nlon_out = out_shape

108
109
    lats_in, win = quadrature._precompute_latitudes(nlat_in, grid=grid_in)
    lats_out, wout = quadrature._precompute_latitudes(nlat_out, grid=grid_out)
Boris Bonev's avatar
Boris Bonev committed
110

Thorsten Kurth's avatar
Thorsten Kurth committed
111
112
113
    # compute the phi differences.
    lons_in = _precompute_longitudes(nlon_in)
    lons_out = _precompute_longitudes(nlon_out)
114
115
116

    # effective theta cutoff if multiplied with a fudge factor to avoid aliasing with grid width (especially near poles)
    theta_cutoff_eff = (1.0 + theta_eps) * theta_cutoff
Boris Bonev's avatar
Boris Bonev committed
117

118
119
    # compute quadrature weights that will be merged into the Psi tensor
    if transpose_normalization:
Thorsten Kurth's avatar
Thorsten Kurth committed
120
        quad_weights = wout.reshape(-1, 1) / nlon_in / 2.0
121
    else:
Thorsten Kurth's avatar
Thorsten Kurth committed
122
        quad_weights = win.reshape(-1, 1) / nlon_in / 2.0
123

124
125
    # array for accumulating non-zero indices
    out = torch.zeros(kernel_size, nlat_out, nlon_out, nlat_in, nlon_in, dtype=torch.float64)
Boris Bonev's avatar
Boris Bonev committed
126
127
128
129
130
131
132
133
134
135
136
137

    for t in range(nlat_out):
        for p in range(nlon_out):
            alpha = -lats_out[t]
            beta = lons_in - lons_out[p]
            gamma = lats_in.reshape(-1, 1)

            # compute latitude of the rotated position
            z = -torch.cos(beta) * torch.sin(alpha) * torch.sin(gamma) + torch.cos(alpha) * torch.cos(gamma)

            # compute cartesian coordinates of the rotated position
            x = torch.cos(alpha) * torch.cos(beta) * torch.sin(gamma) + torch.cos(gamma) * torch.sin(alpha)
138
            y = torch.sin(beta) * torch.sin(gamma) * torch.ones_like(alpha)
Boris Bonev's avatar
Boris Bonev committed
139
140
141
142
143
144
145
146
147

            # normalize instead of clipping to ensure correct range
            norm = torch.sqrt(x * x + y * y + z * z)
            x = x / norm
            y = y / norm
            z = z / norm

            # compute spherical coordinates
            theta = torch.arccos(z)
148
149
            phi = torch.arctan2(y, x)
            phi = torch.where(phi < 0.0, phi + 2 * torch.pi, phi)
Boris Bonev's avatar
Boris Bonev committed
150
151

            # find the indices where the rotated position falls into the support of the kernel
152
            iidx, vals = filter_basis.compute_support_vals(theta, phi, r_cutoff=theta_cutoff_eff)
153
            out[iidx[:, 0], t, p, iidx[:, 1], iidx[:, 2]] = vals
Boris Bonev's avatar
Boris Bonev committed
154

155
    # take care of normalization and cast to float
156
157
158
    out = _normalize_convolution_tensor_dense(
        out, quad_weights=quad_weights, transpose_normalization=transpose_normalization, basis_norm_mode=basis_norm_mode, merge_quadrature=merge_quadrature
    )
159
    out = out.to(dtype=torch.float32)
Boris Bonev's avatar
Boris Bonev committed
160

Boris Bonev's avatar
Boris Bonev committed
161
162
163
164
165
166
    return out


class TestDiscreteContinuousConvolution(unittest.TestCase):
    def setUp(self):
        if torch.cuda.is_available():
167
168
169
            self.device = torch.device("cuda:0")
            torch.cuda.set_device(self.device.index)
            torch.cuda.manual_seed(333)
Boris Bonev's avatar
Boris Bonev committed
170
171
        else:
            self.device = torch.device("cpu")
Boris Bonev's avatar
Boris Bonev committed
172

Boris Bonev's avatar
Boris Bonev committed
173
174
175
    @parameterized.expand(
        [
            # regular convolution
Thorsten Kurth's avatar
Thorsten Kurth committed
176
177
178
179
180
181
182
183
184
185
186
            [8, 4, 2, (16, 32), (16, 32), (3), "piecewise linear", "mean", "equiangular", "equiangular", False, 1e-4, False],
            [8, 4, 2, (16, 32), (8, 16), (3), "piecewise linear", "mean", "equiangular", "equiangular", False, 1e-4, False],
            [8, 4, 2, (24, 48), (12, 24), (3, 3), "piecewise linear", "mean", "equiangular", "equiangular", False, 1e-4, False],
            [8, 4, 2, (24, 48), (12, 24), (4, 3), "piecewise linear", "mean", "equiangular", "equiangular", False, 1e-4, False],
            [8, 4, 2, (24, 48), (12, 24), (2, 2), "morlet", "mean", "equiangular", "equiangular", False, 1e-4, False],
            [8, 4, 2, (24, 48), (12, 24), (3), "zernike", "mean", "equiangular", "equiangular", False, 1e-4, False],
            [8, 4, 2, (16, 24), (8, 8), (3), "piecewise linear", "mean", "equiangular", "equiangular", False, 1e-4, False],
            [8, 4, 2, (18, 36), (6, 12), (7), "piecewise linear", "mean", "equiangular", "equiangular", False, 1e-4, False],
            [8, 4, 2, (16, 32), (8, 16), (5), "piecewise linear", "mean", "equiangular", "legendre-gauss", False, 1e-4, False],
            [8, 4, 2, (16, 32), (8, 16), (5), "piecewise linear", "mean", "legendre-gauss", "equiangular", False, 1e-4, False],
            [8, 4, 2, (16, 32), (8, 16), (5), "piecewise linear", "mean", "legendre-gauss", "legendre-gauss", False, 1e-4, False],
Boris Bonev's avatar
Boris Bonev committed
187
            # transpose convolution
Thorsten Kurth's avatar
Thorsten Kurth committed
188
189
190
191
192
193
194
195
196
197
198
            [8, 4, 2, (16, 32), (16, 32), (3), "piecewise linear", "mean", "equiangular", "equiangular", True, 1e-4, False],
            [8, 4, 2, (8, 16), (16, 32), (5), "piecewise linear", "mean", "equiangular", "equiangular", True, 1e-4, False],
            [8, 4, 2, (12, 24), (24, 48), (3, 3), "piecewise linear", "mean", "equiangular", "equiangular", True, 1e-4, False],
            [8, 4, 2, (12, 24), (24, 48), (4, 3), "piecewise linear", "mean", "equiangular", "equiangular", True, 1e-4, False],
            [8, 4, 2, (12, 24), (24, 48), (2, 2), "morlet", "mean", "equiangular", "equiangular", True, 1e-4, False],
            [8, 4, 2, (12, 24), (24, 48), (3), "zernike", "mean", "equiangular", "equiangular", True, 1e-4, False],
            [8, 4, 2, (8, 8), (16, 24), (3), "piecewise linear", "mean", "equiangular", "equiangular", True, 1e-4, False],
            [8, 4, 2, (6, 12), (18, 36), (7), "piecewise linear", "mean", "equiangular", "equiangular", True, 1e-4, False],
            [8, 4, 2, (8, 16), (16, 32), (5), "piecewise linear", "mean", "equiangular", "legendre-gauss", True, 1e-4, False],
            [8, 4, 2, (8, 16), (16, 32), (5), "piecewise linear", "mean", "legendre-gauss", "equiangular", True, 1e-4, False],
            [8, 4, 2, (8, 16), (16, 32), (5), "piecewise linear", "mean", "legendre-gauss", "legendre-gauss", True, 1e-4, False],
Boris Bonev's avatar
Boris Bonev committed
199
200
201
202
203
204
205
206
207
208
        ]
    )
    def test_disco_convolution(
        self,
        batch_size,
        in_channels,
        out_channels,
        in_shape,
        out_shape,
        kernel_shape,
209
210
        basis_type,
        basis_norm_mode,
Boris Bonev's avatar
Boris Bonev committed
211
212
213
214
        grid_in,
        grid_out,
        transpose,
        tol,
Thorsten Kurth's avatar
Thorsten Kurth committed
215
        verbose,
Boris Bonev's avatar
Boris Bonev committed
216
    ):
Thorsten Kurth's avatar
Thorsten Kurth committed
217
218
219
220

        if verbose:
            print(f"Testing DISCO convolution on {in_shape[0]}x{in_shape[1]} {grid_in} grid to {out_shape[0]}x{out_shape[1]} {grid_out} grid on {self.device.type} device")
        
Boris Bonev's avatar
Boris Bonev committed
221
222
223
        nlat_in, nlon_in = in_shape
        nlat_out, nlon_out = out_shape

Thorsten Kurth's avatar
Thorsten Kurth committed
224
225
226
227
        if isinstance(kernel_shape, int):
            theta_cutoff = (kernel_shape + 1) * torch.pi / float(nlat_in - 1)
        else:
            theta_cutoff = (kernel_shape[0] + 1) * torch.pi / float(nlat_in - 1)
Boris Bonev's avatar
Boris Bonev committed
228

Boris Bonev's avatar
Boris Bonev committed
229
        Conv = DiscreteContinuousConvTransposeS2 if transpose else DiscreteContinuousConvS2
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
        conv = Conv(
            in_channels,
            out_channels,
            in_shape,
            out_shape,
            kernel_shape,
            basis_type=basis_type,
            basis_norm_mode=basis_norm_mode,
            groups=1,
            grid_in=grid_in,
            grid_out=grid_out,
            bias=False,
            theta_cutoff=theta_cutoff,
        ).to(self.device)

        filter_basis = conv.filter_basis
Boris Bonev's avatar
Boris Bonev committed
246
247

        if transpose:
248
            psi_dense = _precompute_convolution_tensor_dense(
249
250
251
252
253
254
255
256
257
                out_shape,
                in_shape,
                filter_basis,
                grid_in=grid_out,
                grid_out=grid_in,
                theta_cutoff=theta_cutoff,
                transpose_normalization=transpose,
                basis_norm_mode=basis_norm_mode,
                merge_quadrature=True,
258
            ).to(self.device)
Boris Bonev's avatar
Boris Bonev committed
259
260
261
262

            psi = torch.sparse_coo_tensor(conv.psi_idx, conv.psi_vals, size=(conv.kernel_size, conv.nlat_in, conv.nlat_out * conv.nlon_out)).to_dense()

            self.assertTrue(torch.allclose(psi, psi_dense[:, :, 0].reshape(-1, nlat_in, nlat_out * nlon_out)))
Boris Bonev's avatar
Boris Bonev committed
263
        else:
264
            psi_dense = _precompute_convolution_tensor_dense(
265
266
267
268
269
270
271
272
273
                in_shape,
                out_shape,
                filter_basis,
                grid_in=grid_in,
                grid_out=grid_out,
                theta_cutoff=theta_cutoff,
                transpose_normalization=transpose,
                basis_norm_mode=basis_norm_mode,
                merge_quadrature=True,
274
            ).to(self.device)
Boris Bonev's avatar
Boris Bonev committed
275

Boris Bonev's avatar
Boris Bonev committed
276
277
            psi = torch.sparse_coo_tensor(conv.psi_idx, conv.psi_vals, size=(conv.kernel_size, conv.nlat_out, conv.nlat_in * conv.nlon_in)).to_dense()

Boris Bonev's avatar
Boris Bonev committed
278
            self.assertTrue(torch.allclose(psi, psi_dense[:, :, 0].reshape(-1, nlat_out, nlat_in * nlon_in)))
Boris Bonev's avatar
Boris Bonev committed
279
280

        # create a copy of the weight
281
282
283
284
        w_ref = torch.empty_like(conv.weight)
        with torch.no_grad():
            w_ref.copy_(conv.weight)
        w_ref.requires_grad = True
Boris Bonev's avatar
Boris Bonev committed
285
286

        # create an input signal
287
288
289
290
291
292
293
294
        x = torch.randn(batch_size, in_channels, *in_shape, device=self.device)

        # FWD and BWD pass
        x.requires_grad = True
        y = conv(x)
        grad_input = torch.randn_like(y)
        y.backward(grad_input)
        x_grad = x.grad.clone()
Boris Bonev's avatar
Boris Bonev committed
295
296
297

        # perform the reference computation
        x_ref = x.clone().detach()
298
        x_ref.requires_grad = True
Boris Bonev's avatar
Boris Bonev committed
299
300
        if transpose:
            y_ref = torch.einsum("oif,biqr->bofqr", w_ref, x_ref)
301
            y_ref = torch.einsum("fqrtp,bofqr->botp", psi_dense, y_ref)
Boris Bonev's avatar
Boris Bonev committed
302
        else:
303
            y_ref = torch.einsum("ftpqr,bcqr->bcftp", psi_dense, x_ref)
Boris Bonev's avatar
Boris Bonev committed
304
            y_ref = torch.einsum("oif,biftp->botp", w_ref, y_ref)
305
        y_ref.backward(grad_input)
Boris Bonev's avatar
Boris Bonev committed
306
307
        x_ref_grad = x_ref.grad.clone()

Boris Bonev's avatar
Boris Bonev committed
308
309
310
        # compare results
        self.assertTrue(torch.allclose(y, y_ref, rtol=tol, atol=tol))

Boris Bonev's avatar
Boris Bonev committed
311
        # compare
312
        self.assertTrue(torch.allclose(x_grad, x_ref_grad, rtol=tol, atol=tol))
Boris Bonev's avatar
Boris Bonev committed
313
314
        self.assertTrue(torch.allclose(conv.weight.grad, w_ref.grad, rtol=tol, atol=tol))

Boris Bonev's avatar
Boris Bonev committed
315

Boris Bonev's avatar
Boris Bonev committed
316
317
if __name__ == "__main__":
    unittest.main()