layers.py 10.8 KB
Newer Older
Boris Bonev's avatar
Boris Bonev committed
1
2
3
4
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
Boris Bonev's avatar
Boris Bonev committed
5
#
Boris Bonev's avatar
Boris Bonev committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import torch
import torch.nn as nn
import torch.fft
35
from torch.utils.checkpoint import checkpoint
Boris Bonev's avatar
Boris Bonev committed
36
37
38
import math

from torch_harmonics import *
39
from .activations import *
Boris Bonev's avatar
Boris Bonev committed
40
41
42
43
44
45
46

def _no_grad_trunc_normal_(tensor, mean, std, a, b):
    # Cut & paste from PyTorch official master until it's in a few official releases - RW
    # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
    def norm_cdf(x):
        # Computes standard normal cumulative distribution function
        return (1. + math.erf(x / math.sqrt(2.))) / 2.
Boris Bonev's avatar
Boris Bonev committed
47

Boris Bonev's avatar
Boris Bonev committed
48
49
50
51
    if (mean < a - 2 * std) or (mean > b + 2 * std):
        warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
                      "The distribution of values may be incorrect.",
                      stacklevel=2)
Boris Bonev's avatar
Boris Bonev committed
52

Boris Bonev's avatar
Boris Bonev committed
53
54
55
56
57
58
    with torch.no_grad():
        # Values are generated by using a truncated uniform distribution and
        # then using the inverse CDF for the normal distribution.
        # Get upper and lower cdf values
        l = norm_cdf((a - mean) / std)
        u = norm_cdf((b - mean) / std)
Boris Bonev's avatar
Boris Bonev committed
59

Boris Bonev's avatar
Boris Bonev committed
60
61
62
        # Uniformly fill tensor with values from [l, u], then translate to
        # [2l-1, 2u-1].
        tensor.uniform_(2 * l - 1, 2 * u - 1)
Boris Bonev's avatar
Boris Bonev committed
63

Boris Bonev's avatar
Boris Bonev committed
64
65
66
        # Use inverse cdf transform for normal distribution to get truncated
        # standard normal
        tensor.erfinv_()
Boris Bonev's avatar
Boris Bonev committed
67

Boris Bonev's avatar
Boris Bonev committed
68
69
70
        # Transform to proper mean, std
        tensor.mul_(std * math.sqrt(2.))
        tensor.add_(mean)
Boris Bonev's avatar
Boris Bonev committed
71

Boris Bonev's avatar
Boris Bonev committed
72
73
74
        # Clamp to ensure it's in the proper range
        tensor.clamp_(min=a, max=b)
        return tensor
Boris Bonev's avatar
Boris Bonev committed
75
76


Boris Bonev's avatar
Boris Bonev committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
    r"""Fills the input Tensor with values drawn from a truncated
    normal distribution. The values are effectively drawn from the
    normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
    with values outside :math:`[a, b]` redrawn until they are within
    the bounds. The method used for generating the random values works
    best when :math:`a \leq \text{mean} \leq b`.
    Args:
    tensor: an n-dimensional `torch.Tensor`
    mean: the mean of the normal distribution
    std: the standard deviation of the normal distribution
    a: the minimum cutoff value
    b: the maximum cutoff value
    Examples:
    >>> w = torch.empty(3, 5)
    >>> nn.init.trunc_normal_(w)
    """
    return _no_grad_trunc_normal_(tensor, mean, std, a, b)


@torch.jit.script
def drop_path(x: torch.Tensor, drop_prob: float = 0., training: bool = False) -> torch.Tensor:
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
    This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
    changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
    'survival rate' as the argument.
    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1. - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2d ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob
Boris Bonev's avatar
Boris Bonev committed
122

Boris Bonev's avatar
Boris Bonev committed
123
    def forward(self, x):
Boris Bonev's avatar
Boris Bonev committed
124
        return drop_path(x, self.drop_prob, self.training)
Boris Bonev's avatar
Boris Bonev committed
125
126
127
128
129
130

class MLP(nn.Module):
    def __init__(self,
                 in_features,
                 hidden_features = None,
                 out_features = None,
131
132
                 act_layer = nn.ReLU,
                 output_bias = False,
Boris Bonev's avatar
Boris Bonev committed
133
                 drop_rate = 0.,
134
135
                 checkpointing = False,
                 gain = 1.0):
Boris Bonev's avatar
Boris Bonev committed
136
137
138
139
140
        super(MLP, self).__init__()
        self.checkpointing = checkpointing
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features

141
        # Fist dense layer
Boris Bonev's avatar
Boris Bonev committed
142
        fc1 = nn.Conv2d(in_features, hidden_features, 1, bias=True)
143
144
145
146
147
148
149
        # initialize the weights correctly
        scale = math.sqrt(2.0 / in_features)
        nn.init.normal_(fc1.weight, mean=0., std=scale)
        if fc1.bias is not None:
            nn.init.constant_(fc1.bias, 0.0)

        # activation
Boris Bonev's avatar
Boris Bonev committed
150
        act = act_layer()
151
152
153
154
155
156
157
158
159

        # output layer
        fc2 = nn.Conv2d(hidden_features, out_features, 1, bias=output_bias)
        # gain factor for the output determines the scaling of the output init
        scale = math.sqrt(gain / hidden_features)
        nn.init.normal_(fc2.weight, mean=0., std=scale)
        if fc2.bias is not None:
            nn.init.constant_(fc2.bias, 0.0)

Boris Bonev's avatar
Boris Bonev committed
160
        if drop_rate > 0.:
161
            drop = nn.Dropout2d(drop_rate)
Boris Bonev's avatar
Boris Bonev committed
162
163
164
            self.fwd = nn.Sequential(fc1, act, drop, fc2, drop)
        else:
            self.fwd = nn.Sequential(fc1, act, fc2)
Boris Bonev's avatar
Boris Bonev committed
165

Boris Bonev's avatar
Boris Bonev committed
166
167
168
    @torch.jit.ignore
    def checkpoint_forward(self, x):
        return checkpoint(self.fwd, x)
Boris Bonev's avatar
Boris Bonev committed
169

Boris Bonev's avatar
Boris Bonev committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    def forward(self, x):
        if self.checkpointing:
            return self.checkpoint_forward(x)
        else:
            return self.fwd(x)

class RealFFT2(nn.Module):
    """
    Helper routine to wrap FFT similarly to the SHT
    """
    def __init__(self,
                 nlat,
                 nlon,
                 lmax = None,
                 mmax = None):
        super(RealFFT2, self).__init__()

        self.nlat = nlat
        self.nlon = nlon
        self.lmax = lmax or self.nlat
        self.mmax = mmax or self.nlon // 2 + 1

    def forward(self, x):
        y = torch.fft.rfft2(x, dim=(-2, -1), norm="ortho")
        y = torch.cat((y[..., :math.ceil(self.lmax/2), :self.mmax], y[..., -math.floor(self.lmax/2):, :self.mmax]), dim=-2)
        return y

class InverseRealFFT2(nn.Module):
    """
    Helper routine to wrap FFT similarly to the SHT
    """
    def __init__(self,
                 nlat,
                 nlon,
                 lmax = None,
                 mmax = None):
        super(InverseRealFFT2, self).__init__()

        self.nlat = nlat
        self.nlon = nlon
        self.lmax = lmax or self.nlat
        self.mmax = mmax or self.nlon // 2 + 1

    def forward(self, x):
        return torch.fft.irfft2(x, dim=(-2, -1), s=(self.nlat, self.nlon), norm="ortho")
Boris Bonev's avatar
Boris Bonev committed
215

Boris Bonev's avatar
Boris Bonev committed
216
217
218
219
220
221
class SpectralConvS2(nn.Module):
    """
    Spectral Convolution according to Driscoll & Healy. Designed for convolutions on the two-sphere S2
    using the Spherical Harmonic Transforms in torch-harmonics, but supports convolutions on the periodic
    domain via the RealFFT2 and InverseRealFFT2 wrappers.
    """
Boris Bonev's avatar
Boris Bonev committed
222

Boris Bonev's avatar
Boris Bonev committed
223
224
225
226
227
    def __init__(self,
                 forward_transform,
                 inverse_transform,
                 in_channels,
                 out_channels,
228
229
                 gain = 2.,
                 operator_type = "driscoll-healy",
Boris Bonev's avatar
Boris Bonev committed
230
231
                 lr_scale_exponent = 0,
                 bias = False):
232
        super().__init__()
Boris Bonev's avatar
Boris Bonev committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

        self.forward_transform = forward_transform
        self.inverse_transform = inverse_transform

        self.modes_lat = self.inverse_transform.lmax
        self.modes_lon = self.inverse_transform.mmax

        self.scale_residual = (self.forward_transform.nlat != self.inverse_transform.nlat) \
                        or (self.forward_transform.nlon != self.inverse_transform.nlon)

        # remember factorization details
        self.operator_type = operator_type

        assert self.inverse_transform.lmax == self.modes_lat
        assert self.inverse_transform.mmax == self.modes_lon

249
        weight_shape = [out_channels, in_channels]
Boris Bonev's avatar
Boris Bonev committed
250

251
        if self.operator_type == "diagonal":
Boris Bonev's avatar
Boris Bonev committed
252
            weight_shape += [self.modes_lat, self.modes_lon]
253
            self.contract_func = "...ilm,oilm->...olm"
254
        elif self.operator_type == "block-diagonal":
Boris Bonev's avatar
Boris Bonev committed
255
            weight_shape += [self.modes_lat, self.modes_lon, self.modes_lon]
256
            self.contract_func = "...ilm,oilnm->...oln"
257
        elif self.operator_type == "driscoll-healy":
Boris Bonev's avatar
Boris Bonev committed
258
            weight_shape += [self.modes_lat]
259
            self.contract_func = "...ilm,oil->...olm"
Boris Bonev's avatar
Boris Bonev committed
260
261
262
263
        else:
            raise NotImplementedError(f"Unkonw operator type f{self.operator_type}")

        # form weight tensors
264
        scale = math.sqrt(gain / in_channels)
265
        self.weight = nn.Parameter(scale * torch.randn(*weight_shape, dtype=torch.complex64))
Boris Bonev's avatar
Boris Bonev committed
266
        if bias:
267
            self.bias = nn.Parameter(torch.zeros(1, out_channels, 1, 1))
Boris Bonev's avatar
Boris Bonev committed
268

Boris Bonev's avatar
Boris Bonev committed
269

Boris Bonev's avatar
Boris Bonev committed
270
271
272
273
274
275
    def forward(self, x):

        dtype = x.dtype
        x = x.float()
        residual = x

Boris Bonev's avatar
Boris Bonev committed
276
        with torch.autocast(device_type="cuda", enabled=False):
Boris Bonev's avatar
Boris Bonev committed
277
278
279
280
            x = self.forward_transform(x)
            if self.scale_residual:
                residual = self.inverse_transform(x)

281
        x = torch.einsum(self.contract_func, x, self.weight)
Boris Bonev's avatar
Boris Bonev committed
282

Boris Bonev's avatar
Boris Bonev committed
283
        with torch.autocast(device_type="cuda", enabled=False):
Boris Bonev's avatar
Boris Bonev committed
284
            x = self.inverse_transform(x)
Boris Bonev's avatar
Boris Bonev committed
285

286
        if hasattr(self, "bias"):
Boris Bonev's avatar
Boris Bonev committed
287
288
            x = x + self.bias
        x = x.type(dtype)
Boris Bonev's avatar
Boris Bonev committed
289

290
        return x, residual