layers.py 15 KB
Newer Older
Boris Bonev's avatar
Boris Bonev committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
# 
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import torch
import torch.nn as nn
import torch.fft
35
from torch.utils.checkpoint import checkpoint
Boris Bonev's avatar
Boris Bonev committed
36
37
38
39
from torch.cuda import amp
import math

from torch_harmonics import *
40
41
from .contractions import *
from .activations import *
Boris Bonev's avatar
Boris Bonev committed
42
43
44
45

# # import FactorizedTensor from tensorly for tensorized operations
# import tensorly as tl
# from tensorly.plugins import use_opt_einsum
46
47
# tl.set_backend("pytorch")
# use_opt_einsum("optimal")
Boris Bonev's avatar
Boris Bonev committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from tltorch.factorized_tensors.core import FactorizedTensor

def _no_grad_trunc_normal_(tensor, mean, std, a, b):
    # Cut & paste from PyTorch official master until it's in a few official releases - RW
    # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
    def norm_cdf(x):
        # Computes standard normal cumulative distribution function
        return (1. + math.erf(x / math.sqrt(2.))) / 2.
    
    if (mean < a - 2 * std) or (mean > b + 2 * std):
        warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
                      "The distribution of values may be incorrect.",
                      stacklevel=2)
        
    with torch.no_grad():
        # Values are generated by using a truncated uniform distribution and
        # then using the inverse CDF for the normal distribution.
        # Get upper and lower cdf values
        l = norm_cdf((a - mean) / std)
        u = norm_cdf((b - mean) / std)
        
        # Uniformly fill tensor with values from [l, u], then translate to
        # [2l-1, 2u-1].
        tensor.uniform_(2 * l - 1, 2 * u - 1)
        
        # Use inverse cdf transform for normal distribution to get truncated
        # standard normal
        tensor.erfinv_()
        
        # Transform to proper mean, std
        tensor.mul_(std * math.sqrt(2.))
        tensor.add_(mean)
                                                                                                                                
        # Clamp to ensure it's in the proper range
        tensor.clamp_(min=a, max=b)
        return tensor
    
    
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
    r"""Fills the input Tensor with values drawn from a truncated
    normal distribution. The values are effectively drawn from the
    normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
    with values outside :math:`[a, b]` redrawn until they are within
    the bounds. The method used for generating the random values works
    best when :math:`a \leq \text{mean} \leq b`.
    Args:
    tensor: an n-dimensional `torch.Tensor`
    mean: the mean of the normal distribution
    std: the standard deviation of the normal distribution
    a: the minimum cutoff value
    b: the maximum cutoff value
    Examples:
    >>> w = torch.empty(3, 5)
    >>> nn.init.trunc_normal_(w)
    """
    return _no_grad_trunc_normal_(tensor, mean, std, a, b)


@torch.jit.script
def drop_path(x: torch.Tensor, drop_prob: float = 0., training: bool = False) -> torch.Tensor:
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
    This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
    changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
    'survival rate' as the argument.
    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1. - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2d ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob
        
    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training) 

class MLP(nn.Module):
    def __init__(self,
                 in_features,
                 hidden_features = None,
                 out_features = None,
140
141
                 act_layer = nn.ReLU,
                 output_bias = False,
Boris Bonev's avatar
Boris Bonev committed
142
                 drop_rate = 0.,
143
144
                 checkpointing = False,
                 gain = 1.0):
Boris Bonev's avatar
Boris Bonev committed
145
146
147
148
149
        super(MLP, self).__init__()
        self.checkpointing = checkpointing
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features

150
        # Fist dense layer
Boris Bonev's avatar
Boris Bonev committed
151
        fc1 = nn.Conv2d(in_features, hidden_features, 1, bias=True)
152
153
154
155
156
157
158
        # initialize the weights correctly
        scale = math.sqrt(2.0 / in_features)
        nn.init.normal_(fc1.weight, mean=0., std=scale)
        if fc1.bias is not None:
            nn.init.constant_(fc1.bias, 0.0)

        # activation
Boris Bonev's avatar
Boris Bonev committed
159
        act = act_layer()
160
161
162
163
164
165
166
167
168

        # output layer
        fc2 = nn.Conv2d(hidden_features, out_features, 1, bias=output_bias)
        # gain factor for the output determines the scaling of the output init
        scale = math.sqrt(gain / hidden_features)
        nn.init.normal_(fc2.weight, mean=0., std=scale)
        if fc2.bias is not None:
            nn.init.constant_(fc2.bias, 0.0)

Boris Bonev's avatar
Boris Bonev committed
169
        if drop_rate > 0.:
170
            drop = nn.Dropout2d(drop_rate)
Boris Bonev's avatar
Boris Bonev committed
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
            self.fwd = nn.Sequential(fc1, act, drop, fc2, drop)
        else:
            self.fwd = nn.Sequential(fc1, act, fc2)
 
    @torch.jit.ignore
    def checkpoint_forward(self, x):
        return checkpoint(self.fwd, x)
        
    def forward(self, x):
        if self.checkpointing:
            return self.checkpoint_forward(x)
        else:
            return self.fwd(x)

class RealFFT2(nn.Module):
    """
    Helper routine to wrap FFT similarly to the SHT
    """
    def __init__(self,
                 nlat,
                 nlon,
                 lmax = None,
                 mmax = None):
        super(RealFFT2, self).__init__()

        self.nlat = nlat
        self.nlon = nlon
        self.lmax = lmax or self.nlat
        self.mmax = mmax or self.nlon // 2 + 1

    def forward(self, x):
        y = torch.fft.rfft2(x, dim=(-2, -1), norm="ortho")
        y = torch.cat((y[..., :math.ceil(self.lmax/2), :self.mmax], y[..., -math.floor(self.lmax/2):, :self.mmax]), dim=-2)
        return y

class InverseRealFFT2(nn.Module):
    """
    Helper routine to wrap FFT similarly to the SHT
    """
    def __init__(self,
                 nlat,
                 nlon,
                 lmax = None,
                 mmax = None):
        super(InverseRealFFT2, self).__init__()

        self.nlat = nlat
        self.nlon = nlon
        self.lmax = lmax or self.nlat
        self.mmax = mmax or self.nlon // 2 + 1

    def forward(self, x):
        return torch.fft.irfft2(x, dim=(-2, -1), s=(self.nlat, self.nlon), norm="ortho")
Boris Bonev's avatar
Boris Bonev committed
224
    
Boris Bonev's avatar
Boris Bonev committed
225
226
227
228
229
230
231
232
233
234
235
236
class SpectralConvS2(nn.Module):
    """
    Spectral Convolution according to Driscoll & Healy. Designed for convolutions on the two-sphere S2
    using the Spherical Harmonic Transforms in torch-harmonics, but supports convolutions on the periodic
    domain via the RealFFT2 and InverseRealFFT2 wrappers.
    """
    
    def __init__(self,
                 forward_transform,
                 inverse_transform,
                 in_channels,
                 out_channels,
237
238
                 gain = 2.,
                 operator_type = "driscoll-healy",
Boris Bonev's avatar
Boris Bonev committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
                 lr_scale_exponent = 0,
                 bias = False):
        super(SpectralConvS2, self).__init__()

        self.forward_transform = forward_transform
        self.inverse_transform = inverse_transform

        self.modes_lat = self.inverse_transform.lmax
        self.modes_lon = self.inverse_transform.mmax

        self.scale_residual = (self.forward_transform.nlat != self.inverse_transform.nlat) \
                        or (self.forward_transform.nlon != self.inverse_transform.nlon)

        # remember factorization details
        self.operator_type = operator_type

        assert self.inverse_transform.lmax == self.modes_lat
        assert self.inverse_transform.mmax == self.modes_lon

258
        weight_shape = [out_channels, in_channels]
Boris Bonev's avatar
Boris Bonev committed
259

260
        if self.operator_type == "diagonal":
Boris Bonev's avatar
Boris Bonev committed
261
262
            weight_shape += [self.modes_lat, self.modes_lon]
            from .contractions import contract_diagonal as _contract
263
        elif self.operator_type == "block-diagonal":
Boris Bonev's avatar
Boris Bonev committed
264
265
            weight_shape += [self.modes_lat, self.modes_lon, self.modes_lon]
            from .contractions import contract_blockdiag as _contract
266
        elif self.operator_type == "driscoll-healy":
Boris Bonev's avatar
Boris Bonev committed
267
268
269
270
271
272
            weight_shape += [self.modes_lat]
            from .contractions import contract_dhconv as _contract
        else:
            raise NotImplementedError(f"Unkonw operator type f{self.operator_type}")

        # form weight tensors
273
274
275
276
        scale = math.sqrt(gain / in_channels) * torch.ones(self.modes_lat, 2)
        scale[0] *=  math.sqrt(2)
        self.weight = nn.Parameter(scale * torch.view_as_real(torch.randn(*weight_shape, dtype=torch.complex64)))
        # self.weight = nn.Parameter(scale * torch.randn(*weight_shape, 2))
Boris Bonev's avatar
Boris Bonev committed
277
278
279
280
281

        # get the right contraction function
        self._contract = _contract
   
        if bias:
282
            self.bias = nn.Parameter(torch.zeros(1, out_channels, 1, 1))
Boris Bonev's avatar
Boris Bonev committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

        
    def forward(self, x):

        dtype = x.dtype
        x = x.float()
        residual = x

        with amp.autocast(enabled=False):
            x = self.forward_transform(x)
            if self.scale_residual:
                residual = self.inverse_transform(x)


        x = torch.view_as_real(x)
        x = self._contract(x, self.weight)
        x = torch.view_as_complex(x)

        with amp.autocast(enabled=False):
            x = self.inverse_transform(x)
            
304
        if hasattr(self, "bias"):
Boris Bonev's avatar
Boris Bonev committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
            x = x + self.bias
        x = x.type(dtype)
    
        return x, residual

class FactorizedSpectralConvS2(nn.Module):
    """
    Factorized version of SpectralConvS2. Uses tensorly-torch to keep the weights factorized
    """
    
    def __init__(self,
                 forward_transform,
                 inverse_transform,
                 in_channels,
                 out_channels,
320
321
                 gain = 2.,
                 operator_type = "driscoll-healy",
Boris Bonev's avatar
Boris Bonev committed
322
323
324
                 rank = 0.2,
                 factorization = None,
                 separable = False,
325
                 implementation = "factorized",
Boris Bonev's avatar
Boris Bonev committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
                 decomposition_kwargs=dict(),
                 bias = False):
        super(SpectralConvS2, self).__init__()

        self.forward_transform = forward_transform
        self.inverse_transform = inverse_transform

        self.modes_lat = self.inverse_transform.lmax
        self.modes_lon = self.inverse_transform.mmax

        self.scale_residual = (self.forward_transform.nlat != self.inverse_transform.nlat) \
                        or (self.forward_transform.nlon != self.inverse_transform.nlon)

        # Make sure we are using a Complex Factorized Tensor
        if factorization is None:
341
342
343
            factorization = "Dense" # No factorization
        if not factorization.lower().startswith("complex"):
            factorization = f"Complex{factorization}"
Boris Bonev's avatar
Boris Bonev committed
344
345
346
347
348
349
350
351
352
353

        # remember factorization details
        self.operator_type = operator_type
        self.rank = rank
        self.factorization = factorization
        self.separable = separable

        assert self.inverse_transform.lmax == self.modes_lat
        assert self.inverse_transform.mmax == self.modes_lon

354
        weight_shape = [out_channels]
Boris Bonev's avatar
Boris Bonev committed
355
356

        if not self.separable:
357
            weight_shape += [in_channels]
Boris Bonev's avatar
Boris Bonev committed
358

359
        if self.operator_type == "diagonal":
Boris Bonev's avatar
Boris Bonev committed
360
            weight_shape += [self.modes_lat, self.modes_lon]
361
        elif self.operator_type == "block-diagonal":
Boris Bonev's avatar
Boris Bonev committed
362
            weight_shape += [self.modes_lat, self.modes_lon, self.modes_lon]
363
        elif self.operator_type == "driscoll-healy":
Boris Bonev's avatar
Boris Bonev committed
364
365
366
367
368
369
370
371
372
            weight_shape += [self.modes_lat]
        else:
            raise NotImplementedError(f"Unkonw operator type f{self.operator_type}")

        # form weight tensors
        self.weight = FactorizedTensor.new(weight_shape, rank=self.rank, factorization=factorization, 
                                           fixed_rank_modes=False, **decomposition_kwargs)
        
        # initialization of weights
373
        scale = math.sqrt(gain / in_channels)
Boris Bonev's avatar
Boris Bonev committed
374
375
        self.weight.normal_(0, scale)

Boris Bonev's avatar
Boris Bonev committed
376
377
        # get the right contraction function
        from .factorizations import get_contract_fun
Boris Bonev's avatar
Boris Bonev committed
378
379
380
        self._contract = get_contract_fun(self.weight, implementation=implementation, separable=separable)
   
        if bias:
381
            self.bias = nn.Parameter(torch.zeros(1, out_channels, 1, 1))
Boris Bonev's avatar
Boris Bonev committed
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

        
    def forward(self, x):

        dtype = x.dtype
        x = x.float()
        residual = x

        with amp.autocast(enabled=False):
            x = self.forward_transform(x)
            if self.scale_residual:
                residual = self.inverse_transform(x)

        x = self._contract(x, self.weight, separable=self.separable, operator_type=self.operator_type)

        with amp.autocast(enabled=False):
            x = self.inverse_transform(x)
            
400
        if hasattr(self, "bias"):
Boris Bonev's avatar
Boris Bonev committed
401
402
403
404
            x = x + self.bias
        x = x.type(dtype)
    
        return x, residual