README.md 9.61 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
[pypi-image]: https://badge.fury.io/py/torch-cluster.svg
[pypi-url]: https://pypi.python.org/pypi/torch-cluster
rusty1s's avatar
rusty1s committed
3
4
5
6
[testing-image]: https://github.com/rusty1s/pytorch_cluster/actions/workflows/testing.yml/badge.svg
[testing-url]: https://github.com/rusty1s/pytorch_cluster/actions/workflows/testing.yml
[linting-image]: https://github.com/rusty1s/pytorch_cluster/actions/workflows/linting.yml/badge.svg
[linting-url]: https://github.com/rusty1s/pytorch_cluster/actions/workflows/linting.yml
rusty1s's avatar
rusty1s committed
7
8
9
[coverage-image]: https://codecov.io/gh/rusty1s/pytorch_cluster/branch/master/graph/badge.svg
[coverage-url]: https://codecov.io/github/rusty1s/pytorch_cluster?branch=master

rusty1s's avatar
rusty1s committed
10
# PyTorch Cluster
rusty1s's avatar
rusty1s committed
11

rusty1s's avatar
rusty1s committed
12
[![PyPI Version][pypi-image]][pypi-url]
rusty1s's avatar
rusty1s committed
13
14
[![Testing Status][testing-image]][testing-url]
[![Linting Status][linting-image]][linting-url]
rusty1s's avatar
rusty1s committed
15
16
[![Code Coverage][coverage-image]][coverage-url]

rusty1s's avatar
rusty1s committed
17
18
--------------------------------------------------------------------------------

rusty1s's avatar
rusty1s committed
19
This package consists of a small extension library of highly optimized graph cluster algorithms for the use in [PyTorch](http://pytorch.org/).
rusty1s's avatar
typo  
rusty1s committed
20
The package consists of the following clustering algorithms:
rusty1s's avatar
rusty1s committed
21

rusty1s's avatar
credit  
rusty1s committed
22
* **[Graclus](#graclus)** from Dhillon *et al.*: [Weighted Graph Cuts without Eigenvectors: A Multilevel Approach](http://www.cs.utexas.edu/users/inderjit/public_papers/multilevel_pami.pdf) (PAMI 2007)
rusty1s's avatar
rusty1s committed
23
* **[Voxel Grid Pooling](#voxelgrid)** from, *e.g.*, Simonovsky and Komodakis: [Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs](https://arxiv.org/abs/1704.02901) (CVPR 2017)
rusty1s's avatar
rusty1s committed
24
25
* **[Iterative Farthest Point Sampling](#farthestpointsampling)** from, *e.g.* Qi *et al.*: [PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space](https://arxiv.org/abs/1706.02413) (NIPS 2017)
* **[k-NN](#knn-graph)** and **[Radius](#radius-graph)** graph generation
rusty1s's avatar
rusty1s committed
26
* Clustering based on **[Nearest](#nearest)** points
rusty1s's avatar
rusty1s committed
27
* **[Random Walk Sampling](#randomwalk-sampling)** from, *e.g.*, Grover and Leskovec: [node2vec: Scalable Feature Learning for Networks](https://arxiv.org/abs/1607.00653) (KDD 2016)
rusty1s's avatar
rusty1s committed
28
29
30
31
32

All included operations work on varying data types and are implemented both for CPU and GPU.

## Installation

rusty1s's avatar
rusty1s committed
33
34
### Anaconda

rusty1s's avatar
rusty1s committed
35
**Update:** You can now install `pytorch-cluster` via [Anaconda](https://anaconda.org/pyg/pytorch-cluster) for all major OS/PyTorch/CUDA combinations 🤗
rusty1s's avatar
rusty1s committed
36
37
38
Given that you have [`pytorch >= 1.8.0` installed](https://pytorch.org/get-started/locally/), simply run

```
rusty1s's avatar
rusty1s committed
39
conda install pytorch-cluster -c pyg
rusty1s's avatar
rusty1s committed
40
41
```

rusty1s's avatar
rusty1s committed
42
43
### Binaries

rusty1s's avatar
rusty1s committed
44
We alternatively provide pip wheels for all major OS/PyTorch/CUDA combinations, see [here](https://data.pyg.org/whl).
rusty1s's avatar
rusty1s committed
45

rusty1s's avatar
rusty1s committed
46
#### PyTorch 1.9.0
rusty1s's avatar
rusty1s committed
47

rusty1s's avatar
rusty1s committed
48
To install the binaries for PyTorch 1.9.0, simply run
rusty1s's avatar
rusty1s committed
49
50

```
rusty1s's avatar
rusty1s committed
51
pip install torch-cluster -f https://data.pyg.org/whl/torch-1.9.0+${CUDA}.html
rusty1s's avatar
rusty1s committed
52
53
```

rusty1s's avatar
rusty1s committed
54
where `${CUDA}` should be replaced by either `cpu`, `cu102`, or `cu111` depending on your PyTorch installation.
rusty1s's avatar
rusty1s committed
55

rusty1s's avatar
rusty1s committed
56
57
58
59
60
|             | `cpu` | `cu102` | `cu111` |
|-------------|-------|---------|---------|
| **Linux**   | ✅    | ✅      | ✅      |
| **Windows** | ✅    | ✅      | ✅      |
| **macOS**   | ✅    |         |         |
rusty1s's avatar
rusty1s committed
61

rusty1s's avatar
rusty1s committed
62
#### PyTorch 1.8.0/1.8.1
rusty1s's avatar
rusty1s committed
63

rusty1s's avatar
rusty1s committed
64
To install the binaries for PyTorch 1.8.0 and 1.8.1, simply run
rusty1s's avatar
rusty1s committed
65
66

```
rusty1s's avatar
rusty1s committed
67
pip install torch-cluster -f https://data.pyg.org/whl/torch-1.8.0+${CUDA}.html
rusty1s's avatar
rusty1s committed
68
69
```

rusty1s's avatar
rusty1s committed
70
where `${CUDA}` should be replaced by either `cpu`,`cu101`, `cu102`, or `cu111` depending on your PyTorch installation.
rusty1s's avatar
rusty1s committed
71

rusty1s's avatar
rusty1s committed
72
73
74
75
76
|             | `cpu` | `cu101` | `cu102` | `cu111` |
|-------------|-------|---------|---------|---------|
| **Linux**   | ✅    | ✅      | ✅      | ✅      |
| **Windows** | ✅    | ❌      | ✅      | ✅      |
| **macOS**   | ✅    |         |         |         |
rusty1s's avatar
rusty1s committed
77

rusty1s's avatar
rusty1s committed
78
**Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0 and PyTorch 1.7.0/1.7.1 (following the same procedure).
rusty1s's avatar
rusty1s committed
79
80
81
82
83
84
85
86

### From source

Ensure that at least PyTorch 1.4.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*:

```
$ python -c "import torch; print(torch.__version__)"
>>> 1.4.0
rusty1s's avatar
rusty1s committed
87
88

$ python -c "import torch; print(torch.__version__)"
rusty1s's avatar
rusty1s committed
89
>>> 1.1.0
rusty1s's avatar
rusty1s committed
90
91
92
93
94

$ echo $PATH
>>> /usr/local/cuda/bin:...

$ echo $CPATH
rusty1s's avatar
rusty1s committed
95
>>> /usr/local/cuda/include:...
rusty1s's avatar
rusty1s committed
96
97
```

rusty1s's avatar
rusty1s committed
98
99
100
Then run:

```
rusty1s's avatar
rusty1s committed
101
pip install torch-cluster
rusty1s's avatar
rusty1s committed
102
103
```

rusty1s's avatar
rusty1s committed
104
When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail.
rusty1s's avatar
rusty1s committed
105
106
107
108
109
110
111
In this case, ensure that the compute capabilities are set via `TORCH_CUDA_ARCH_LIST`, *e.g.*:

```
export TORCH_CUDA_ARCH_LIST = "6.0 6.1 7.2+PTX 7.5+PTX"
```

## Functions
rusty1s's avatar
rusty1s committed
112

rusty1s's avatar
rusty1s committed
113
### Graclus
rusty1s's avatar
rusty1s committed
114
115

A greedy clustering algorithm of picking an unmarked vertex and matching it with one its unmarked neighbors (that maximizes its edge weight).
rusty1s's avatar
credit  
rusty1s committed
116
The GPU algorithm is adapted from Fagginger Auer and Bisseling: [A GPU Algorithm for Greedy Graph Matching](http://www.staff.science.uu.nl/~bisse101/Articles/match12.pdf) (LNCS 2012)
rusty1s's avatar
rusty1s committed
117
118
119
120
121

```python
import torch
from torch_cluster import graclus_cluster

rusty1s's avatar
rusty1s committed
122
123
row = torch.tensor([0, 1, 1, 2])
col = torch.tensor([1, 0, 2, 1])
rusty1s's avatar
rusty1s committed
124
weight = torch.tensor([1., 1., 1., 1.])  # Optional edge weights.
rusty1s's avatar
rusty1s committed
125
126
127
128
129
130

cluster = graclus_cluster(row, col, weight)
```

```
print(cluster)
rusty1s's avatar
rusty1s committed
131
tensor([0, 0, 1])
rusty1s's avatar
rusty1s committed
132
133
```

rusty1s's avatar
rusty1s committed
134
### VoxelGrid
rusty1s's avatar
rusty1s committed
135
136

A clustering algorithm, which overlays a regular grid of user-defined size over a point cloud and clusters all points within a voxel.
rusty1s's avatar
rusty1s committed
137
138
139
140
141

```python
import torch
from torch_cluster import grid_cluster

rusty1s's avatar
rusty1s committed
142
pos = torch.tensor([[0., 0.], [11., 9.], [2., 8.], [2., 2.], [8., 3.]])
rusty1s's avatar
new api  
rusty1s committed
143
size = torch.Tensor([5, 5])
rusty1s's avatar
rusty1s committed
144
145
146
147
148
149

cluster = grid_cluster(pos, size)
```

```
print(cluster)
rusty1s's avatar
rusty1s committed
150
tensor([0, 5, 3, 0, 1])
rusty1s's avatar
rusty1s committed
151
```
rusty1s's avatar
rusty1s committed
152

rusty1s's avatar
rusty1s committed
153
### FarthestPointSampling
rusty1s's avatar
rusty1s committed
154

rusty1s's avatar
rusty1s committed
155
A sampling algorithm, which iteratively samples the most distant point with regard to the rest points.
rusty1s's avatar
rusty1s committed
156
157
158
159
160

```python
import torch
from torch_cluster import fps

rusty1s's avatar
rusty1s committed
161
x = torch.tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.]])
rusty1s's avatar
rusty1s committed
162
batch = torch.tensor([0, 0, 0, 0])
rusty1s's avatar
rusty1s committed
163
index = fps(x, batch, ratio=0.5, random_start=False)
rusty1s's avatar
rusty1s committed
164
165
166
```

```
JunZe Yu's avatar
JunZe Yu committed
167
print(index)
rusty1s's avatar
rusty1s committed
168
169
170
tensor([0, 3])
```

rusty1s's avatar
rusty1s committed
171
### kNN-Graph
rusty1s's avatar
rusty1s committed
172

rusty1s's avatar
rusty1s committed
173
Computes graph edges to the nearest *k* points.
rusty1s's avatar
rusty1s committed
174

175
176
177
**Args:**

* **x** *(Tensor)*: Node feature matrix of shape `[N, F]`.
luwei0917's avatar
luwei0917 committed
178
* **k** *(int)*: The number of neighbors.
179
180
181
182
183
184
* **batch** *(LongTensor, optional)*: Batch vector of shape `[N]`, which assigns each node to a specific example. `batch` needs to be sorted. (default: `None`)
* **loop** *(bool, optional)*: If `True`, the graph will contain self-loops. (default: `False`)
* **flow** *(string, optional)*: The flow direction when using in combination with message passing (`"source_to_target"` or `"target_to_source"`). (default: `"source_to_target"`)
* **cosine** *(boolean, optional)*: If `True`, will use the Cosine distance instead of Euclidean distance to find nearest neighbors. (default: `False`)
* **num_workers** *(int)*: Number of workers to use for computation. Has no effect in case `batch` is not `None`, or the input lies on the GPU. (default: `1`)

rusty1s's avatar
rusty1s committed
185
186
187
188
```python
import torch
from torch_cluster import knn_graph

rusty1s's avatar
rusty1s committed
189
x = torch.tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.]])
rusty1s's avatar
rusty1s committed
190
191
192
193
194
195
batch = torch.tensor([0, 0, 0, 0])
edge_index = knn_graph(x, k=2, batch=batch, loop=False)
```

```
print(edge_index)
Matthias Fey's avatar
Matthias Fey committed
196
197
tensor([[1, 2, 0, 3, 0, 3, 1, 2],
        [0, 0, 1, 1, 2, 2, 3, 3]])
rusty1s's avatar
rusty1s committed
198
199
```

rusty1s's avatar
rusty1s committed
200
### Radius-Graph
rusty1s's avatar
rusty1s committed
201

rusty1s's avatar
rusty1s committed
202
Computes graph edges to all points within a given distance.
rusty1s's avatar
rusty1s committed
203

204
205
206
207
208
209
**Args:**

* **x** *(Tensor)*: Node feature matrix of shape `[N, F]`.
* **r** *(float)*: The radius.
* **batch** *(LongTensor, optional)*: Batch vector of shape `[N]`, which assigns each node to a specific example. `batch` needs to be sorted. (default: `None`)
* **loop** *(bool, optional)*: If `True`, the graph will contain self-loops. (default: `False`)
rusty1s's avatar
rusty1s committed
210
* **max_num_neighbors** *(int, optional)*: The maximum number of neighbors to return for each element. If the number of actual neighbors is greater than `max_num_neighbors`, returned neighbors are picked randomly. (default: `32`)
211
212
213
* **flow** *(string, optional)*: The flow direction when using in combination with message passing (`"source_to_target"` or `"target_to_source"`). (default: `"source_to_target"`)
* **num_workers** *(int)*: Number of workers to use for computation. Has no effect in case `batch` is not `None`, or the input lies on the GPU. (default: `1`)

rusty1s's avatar
rusty1s committed
214
215
216
217
```python
import torch
from torch_cluster import radius_graph

rusty1s's avatar
rusty1s committed
218
x = torch.tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.]])
rusty1s's avatar
rusty1s committed
219
batch = torch.tensor([0, 0, 0, 0])
rusty1s's avatar
rusty1s committed
220
edge_index = radius_graph(x, r=2.5, batch=batch, loop=False)
rusty1s's avatar
rusty1s committed
221
222
223
224
```

```
print(edge_index)
Matthias Fey's avatar
Matthias Fey committed
225
226
tensor([[1, 2, 0, 3, 0, 3, 1, 2],
        [0, 0, 1, 1, 2, 2, 3, 3]])
rusty1s's avatar
rusty1s committed
227
228
```

rusty1s's avatar
rusty1s committed
229
### Nearest
rusty1s's avatar
rusty1s committed
230

rusty1s's avatar
rusty1s committed
231
Clusters points in *x* together which are nearest to a given query point in *y*.
rusty1s's avatar
rusty1s committed
232
`batch_{x,y}` vectors need to be sorted.
rusty1s's avatar
rusty1s committed
233
234
235
236
237
238

```python
import torch
from torch_cluster import nearest

x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
rusty1s's avatar
rusty1s committed
239
240
241
242
batch_x = torch.tensor([0, 0, 0, 0])
y = torch.Tensor([[-1, 0], [1, 0]])
batch_y = torch.tensor([0, 0])
cluster = nearest(x, y, batch_x, batch_y)
rusty1s's avatar
rusty1s committed
243
244
245
246
247
248
249
```

```
print(cluster)
tensor([0, 0, 1, 1])
```

rusty1s's avatar
rusty1s committed
250
### RandomWalk-Sampling
rusty1s's avatar
rusty1s committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

Samples random walks of length `walk_length` from all node indices in `start` in the graph given by `(row, col)`.

```python
import torch
from torch_cluster import random_walk

row = torch.tensor([0, 1, 1, 1, 2, 2, 3, 3, 4, 4])
col = torch.tensor([1, 0, 2, 3, 1, 4, 1, 4, 2, 3])
start = torch.tensor([0, 1, 2, 3, 4])

walk = random_walk(row, col, start, walk_length=3)
```

```
print(walk)
Maurits's avatar
Maurits committed
267
tensor([[0, 1, 2, 4],
rusty1s's avatar
rusty1s committed
268
        [1, 3, 4, 2],
Maurits's avatar
Maurits committed
269
270
271
        [2, 4, 2, 1],
        [3, 4, 2, 4],
        [4, 3, 1, 0]])
rusty1s's avatar
rusty1s committed
272
273
```

rusty1s's avatar
rusty1s committed
274
275
276
277
278
## Running tests

```
python setup.py test
```
rusty1s's avatar
rusty1s committed
279
280
281
282
283
284
285
286
287
288
289
290
291

## C++ API

`torch-cluster` also offers a C++ API that contains C++ equivalent of python models.

```
mkdir build
cd build
# Add -DWITH_CUDA=on support for the CUDA if needed
cmake ..
make
make install
```