README.md 4.8 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
[pypi-image]: https://badge.fury.io/py/torch-cluster.svg
[pypi-url]: https://pypi.python.org/pypi/torch-cluster
[build-image]: https://travis-ci.org/rusty1s/pytorch_cluster.svg?branch=master
[build-url]: https://travis-ci.org/rusty1s/pytorch_cluster
[coverage-image]: https://codecov.io/gh/rusty1s/pytorch_cluster/branch/master/graph/badge.svg
[coverage-url]: https://codecov.io/github/rusty1s/pytorch_cluster?branch=master

rusty1s's avatar
rusty1s committed
8
# PyTorch Cluster
rusty1s's avatar
rusty1s committed
9

rusty1s's avatar
rusty1s committed
10
11
12
13
[![PyPI Version][pypi-image]][pypi-url]
[![Build Status][build-image]][build-url]
[![Code Coverage][coverage-image]][coverage-url]

rusty1s's avatar
rusty1s committed
14
15
--------------------------------------------------------------------------------

rusty1s's avatar
rusty1s committed
16
This package consists of a small extension library of highly optimized graph cluster algorithms for the use in [PyTorch](http://pytorch.org/).
rusty1s's avatar
typo  
rusty1s committed
17
The package consists of the following clustering algorithms:
rusty1s's avatar
rusty1s committed
18

rusty1s's avatar
credit  
rusty1s committed
19
* **[Graclus](#graclus)** from Dhillon *et al.*: [Weighted Graph Cuts without Eigenvectors: A Multilevel Approach](http://www.cs.utexas.edu/users/inderjit/public_papers/multilevel_pami.pdf) (PAMI 2007)
rusty1s's avatar
rusty1s committed
20
* **[Voxel Grid Pooling](#voxelgrid)** from, *e.g.*, Simonovsky and Komodakis: [Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs](https://arxiv.org/abs/1704.02901) (CVPR 2017)
rusty1s's avatar
rusty1s committed
21
22
* **[Iterative Farthest Point Sampling](#farthestpointsampling)** from, *e.g.* Qi *et al.*: [PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space](https://arxiv.org/abs/1706.02413) (NIPS 2017)
* **[k-NN](#knn-graph)** and **[Radius](#radius-graph)** graph generation
rusty1s's avatar
rusty1s committed
23
* Clustering based on **[Nearest](#nearest)** points
rusty1s's avatar
rusty1s committed
24
25
26
27
28

All included operations work on varying data types and are implemented both for CPU and GPU.

## Installation

rusty1s's avatar
rusty1s committed
29
Ensure that at least PyTorch 1.0.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*:
rusty1s's avatar
rusty1s committed
30
31
32

```
$ python -c "import torch; print(torch.__version__)"
Duc Nguyen's avatar
Duc Nguyen committed
33
>>> 1.0.0
rusty1s's avatar
rusty1s committed
34
35
36
37
38

$ echo $PATH
>>> /usr/local/cuda/bin:...

$ echo $CPATH
rusty1s's avatar
rusty1s committed
39
>>> /usr/local/cuda/include:...
rusty1s's avatar
rusty1s committed
40
41
```

rusty1s's avatar
rusty1s committed
42
43
44
Then run:

```
rusty1s's avatar
rusty1s committed
45
pip install torch-cluster
rusty1s's avatar
rusty1s committed
46
47
```

rusty1s's avatar
rusty1s committed
48
If you are running into any installation problems, please create an [issue](https://github.com/rusty1s/pytorch_cluster/issues).
rusty1s's avatar
rusty1s committed
49
Be sure to import `torch` first before using this package to resolve symbols the dynamic linker must see.
rusty1s's avatar
rusty1s committed
50

rusty1s's avatar
rusty1s committed
51
52
53
## Graclus

A greedy clustering algorithm of picking an unmarked vertex and matching it with one its unmarked neighbors (that maximizes its edge weight).
rusty1s's avatar
credit  
rusty1s committed
54
The GPU algorithm is adapted from Fagginger Auer and Bisseling: [A GPU Algorithm for Greedy Graph Matching](http://www.staff.science.uu.nl/~bisse101/Articles/match12.pdf) (LNCS 2012)
rusty1s's avatar
rusty1s committed
55
56
57
58
59

```python
import torch
from torch_cluster import graclus_cluster

rusty1s's avatar
rusty1s committed
60
61
row = torch.tensor([0, 1, 1, 2])
col = torch.tensor([1, 0, 2, 1])
rusty1s's avatar
new api  
rusty1s committed
62
weight = torch.Tensor([1, 1, 1, 1])  # Optional edge weights.
rusty1s's avatar
rusty1s committed
63
64
65
66
67
68

cluster = graclus_cluster(row, col, weight)
```

```
print(cluster)
rusty1s's avatar
rusty1s committed
69
tensor([0, 0, 1])
rusty1s's avatar
rusty1s committed
70
71
```

rusty1s's avatar
rusty1s committed
72
73
74
## VoxelGrid

A clustering algorithm, which overlays a regular grid of user-defined size over a point cloud and clusters all points within a voxel.
rusty1s's avatar
rusty1s committed
75
76
77
78
79

```python
import torch
from torch_cluster import grid_cluster

rusty1s's avatar
new api  
rusty1s committed
80
81
pos = torch.Tensor([[0, 0], [11, 9], [2, 8], [2, 2], [8, 3]])
size = torch.Tensor([5, 5])
rusty1s's avatar
rusty1s committed
82
83
84
85
86
87

cluster = grid_cluster(pos, size)
```

```
print(cluster)
rusty1s's avatar
rusty1s committed
88
tensor([0, 5, 3, 0, 1])
rusty1s's avatar
rusty1s committed
89
```
rusty1s's avatar
rusty1s committed
90

rusty1s's avatar
rusty1s committed
91
92
## FarthestPointSampling

rusty1s's avatar
rusty1s committed
93
A sampling algorithm, which iteratively samples the most distant point with regard to the rest points.
rusty1s's avatar
rusty1s committed
94
95
96
97
98
99
100

```python
import torch
from torch_cluster import fps

x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
batch = torch.tensor([0, 0, 0, 0])
rusty1s's avatar
rusty1s committed
101
index = fps(x, batch, ratio=0.5, random_start=False)
rusty1s's avatar
rusty1s committed
102
103
104
105
106
107
108
109
110
```

```
print(sample)
tensor([0, 3])
```

## kNN-Graph

rusty1s's avatar
rusty1s committed
111
Computes graph edges to the nearest *k* points.
rusty1s's avatar
rusty1s committed
112
113
114
115
116
117
118
119
120
121
122
123
124

```python
import torch
from torch_cluster import knn_graph

x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
batch = torch.tensor([0, 0, 0, 0])
edge_index = knn_graph(x, k=2, batch=batch, loop=False)
```

```
print(edge_index)
tensor([[0, 0, 1, 1, 2, 2, 3, 3],
Jelmer Mulder's avatar
Jelmer Mulder committed
125
        [1, 2, 0, 3, 0, 3, 1, 2]])
rusty1s's avatar
rusty1s committed
126
127
128
129
```

## Radius-Graph

rusty1s's avatar
rusty1s committed
130
Computes graph edges to all points within a given distance.
rusty1s's avatar
rusty1s committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

```python
import torch
from torch_cluster import radius_graph

x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
batch = torch.tensor([0, 0, 0, 0])
edge_index = radius_graph(x, r=1.5, batch=batch, loop=False)
```

```
print(edge_index)
tensor([[0, 0, 1, 1, 2, 2, 3, 3],
        [1, 2, 0, 2, 0, 3, 1, 2]])
```

rusty1s's avatar
rusty1s committed
147
148
## Nearest

rusty1s's avatar
rusty1s committed
149
Clusters points in *x* together which are nearest to a given query point in *y*.
rusty1s's avatar
rusty1s committed
150
151
152
153
154
155

```python
import torch
from torch_cluster import nearest

x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
rusty1s's avatar
rusty1s committed
156
157
158
159
batch_x = torch.tensor([0, 0, 0, 0])
y = torch.Tensor([[-1, 0], [1, 0]])
batch_y = torch.tensor([0, 0])
cluster = nearest(x, y, batch_x, batch_y)
rusty1s's avatar
rusty1s committed
160
161
162
163
164
165
166
```

```
print(cluster)
tensor([0, 0, 1, 1])
```

rusty1s's avatar
rusty1s committed
167
168
169
170
171
## Running tests

```
python setup.py test
```