knn.py 6.42 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
from typing import Optional

rusty1s's avatar
rusty1s committed
3
import torch
4
import scipy.spatial
rusty1s's avatar
rusty1s committed
5
6


7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
def knn_cpu(x: torch.Tensor, y: torch.Tensor, k: int,
            batch_x: Optional[torch.Tensor] = None,
            batch_y: Optional[torch.Tensor] = None, cosine: bool = False,
            num_workers: int = 1) -> torch.Tensor:

    if cosine:
        raise NotImplementedError('`cosine` argument not supported on CPU')

    if batch_x is None:
        batch_x = x.new_zeros(x.size(0), dtype=torch.long)

    if batch_y is None:
        batch_y = y.new_zeros(y.size(0), dtype=torch.long)

    # Translate and rescale x and y to [0, 1].
    min_xy = min(x.min().item(), y.min().item())
    x, y = x - min_xy, y - min_xy

    max_xy = max(x.max().item(), y.max().item())
    x.div_(max_xy)
    y.div_(max_xy)

    # Concat batch/features to ensure no cross-links between examples.
    x = torch.cat([x, 2 * x.size(1) * batch_x.view(-1, 1).to(x.dtype)], -1)
    y = torch.cat([y, 2 * y.size(1) * batch_y.view(-1, 1).to(y.dtype)], -1)

    tree = scipy.spatial.cKDTree(x.detach().numpy())
    dist, col = tree.query(y.detach().cpu(), k=k,
                           distance_upper_bound=x.size(1))
    dist = torch.from_numpy(dist).to(x.dtype)
    col = torch.from_numpy(col).to(torch.long)
    row = torch.arange(col.size(0), dtype=torch.long)
    row = row.view(-1, 1).repeat(1, k)
    mask = ~torch.isinf(dist).view(-1)
    row, col = row.view(-1)[mask], col.view(-1)[mask]

    return torch.stack([row, col], dim=0)


# @torch.jit.script
rusty1s's avatar
rusty1s committed
47
48
def knn(x: torch.Tensor, y: torch.Tensor, k: int,
        batch_x: Optional[torch.Tensor] = None,
rusty1s's avatar
rusty1s committed
49
50
        batch_y: Optional[torch.Tensor] = None, cosine: bool = False,
        num_workers: int = 1) -> torch.Tensor:
rusty1s's avatar
rusty1s committed
51
52
    r"""Finds for each element in :obj:`y` the :obj:`k` nearest points in
    :obj:`x`.
rusty1s's avatar
rusty1s committed
53
54

    Args:
rusty1s's avatar
rusty1s committed
55
56
57
58
        x (Tensor): Node feature matrix
            :math:`\mathbf{X} \in \mathbb{R}^{N \times F}`.
        y (Tensor): Node feature matrix
            :math:`\mathbf{X} \in \mathbb{R}^{M \times F}`.
rusty1s's avatar
rusty1s committed
59
        k (int): The number of neighbors.
rusty1s's avatar
rusty1s committed
60
61
        batch_x (LongTensor, optional): Batch vector
            :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
rusty1s's avatar
rusty1s committed
62
63
            node to a specific example. :obj:`batch_x` needs to be sorted.
            (default: :obj:`None`)
rusty1s's avatar
rusty1s committed
64
65
        batch_y (LongTensor, optional): Batch vector
            :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^M`, which assigns each
rusty1s's avatar
rusty1s committed
66
67
68
69
70
71
72
73
            node to a specific example. :obj:`batch_y` needs to be sorted.
            (default: :obj:`None`)
        cosine (boolean, optional): If :obj:`True`, will use the Cosine
            distance instead of the Euclidean distance to find nearest
            neighbors. (default: :obj:`False`)
        num_workers (int): Number of workers to use for computation. Has no
            effect in case :obj:`batch_x` or :obj:`batch_y` is not
            :obj:`None`, or the input lies on the GPU. (default: :obj:`1`)
rusty1s's avatar
rusty1s committed
74
75
76

    :rtype: :class:`LongTensor`

rusty1s's avatar
rusty1s committed
77
    .. code-block:: python
rusty1s's avatar
rusty1s committed
78
79
80
81

        import torch
        from torch_cluster import knn

rusty1s's avatar
rusty1s committed
82
83
84
        x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
        batch_x = torch.tensor([0, 0, 0, 0])
        y = torch.Tensor([[-1, 0], [1, 0]])
Ahmed Ibrahim's avatar
Ahmed Ibrahim committed
85
        batch_y = torch.tensor([0, 0])
rusty1s's avatar
rusty1s committed
86
        assign_index = knn(x, y, 2, batch_x, batch_y)
rusty1s's avatar
rusty1s committed
87
88
89
90
    """

    x = x.view(-1, 1) if x.dim() == 1 else x
    y = y.view(-1, 1) if y.dim() == 1 else y
rusty1s's avatar
rusty1s committed
91
    x, y = x.contiguous(), y.contiguous()
rusty1s's avatar
rusty1s committed
92

93
94
95
    if not x.is_cuda:
        return knn_cpu(x, y, k, batch_x, batch_y, cosine, num_workers)

rusty1s's avatar
rusty1s committed
96
    ptr_x: Optional[torch.Tensor] = None
rusty1s's avatar
rusty1s committed
97
98
99
    if batch_x is not None:
        assert x.size(0) == batch_x.numel()
        batch_size = int(batch_x.max()) + 1
rusty1s's avatar
rusty1s committed
100

rusty1s's avatar
rusty1s committed
101
102
        deg = x.new_zeros(batch_size, dtype=torch.long)
        deg.scatter_add_(0, batch_x, torch.ones_like(batch_x))
rusty1s's avatar
rusty1s committed
103

rusty1s's avatar
rusty1s committed
104
105
        ptr_x = deg.new_zeros(batch_size + 1)
        torch.cumsum(deg, 0, out=ptr_x[1:])
rusty1s's avatar
rusty1s committed
106

rusty1s's avatar
rusty1s committed
107
    ptr_y: Optional[torch.Tensor] = None
rusty1s's avatar
rusty1s committed
108
109
110
    if batch_y is not None:
        assert y.size(0) == batch_y.numel()
        batch_size = int(batch_y.max()) + 1
rusty1s's avatar
rusty1s committed
111

rusty1s's avatar
rusty1s committed
112
113
        deg = y.new_zeros(batch_size, dtype=torch.long)
        deg.scatter_add_(0, batch_y, torch.ones_like(batch_y))
rusty1s's avatar
rusty1s committed
114

rusty1s's avatar
rusty1s committed
115
116
        ptr_y = deg.new_zeros(batch_size + 1)
        torch.cumsum(deg, 0, out=ptr_y[1:])
rusty1s's avatar
rusty1s committed
117

rusty1s's avatar
rusty1s committed
118
119
    return torch.ops.torch_cluster.knn(x, y, ptr_x, ptr_y, k, cosine,
                                       num_workers)
rusty1s's avatar
rusty1s committed
120
121


122
# @torch.jit.script
rusty1s's avatar
rusty1s committed
123
124
def knn_graph(x: torch.Tensor, k: int, batch: Optional[torch.Tensor] = None,
              loop: bool = False, flow: str = 'source_to_target',
rusty1s's avatar
rusty1s committed
125
              cosine: bool = False, num_workers: int = 1) -> torch.Tensor:
rusty1s's avatar
rusty1s committed
126
    r"""Computes graph edges to the nearest :obj:`k` points.
rusty1s's avatar
rusty1s committed
127
128

    Args:
rusty1s's avatar
rusty1s committed
129
130
        x (Tensor): Node feature matrix
            :math:`\mathbf{X} \in \mathbb{R}^{N \times F}`.
rusty1s's avatar
rusty1s committed
131
        k (int): The number of neighbors.
rusty1s's avatar
rusty1s committed
132
133
        batch (LongTensor, optional): Batch vector
            :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
rusty1s's avatar
rusty1s committed
134
135
            node to a specific example. :obj:`batch` needs to be sorted.
            (default: :obj:`None`)
rusty1s's avatar
rusty1s committed
136
137
        loop (bool, optional): If :obj:`True`, the graph will contain
            self-loops. (default: :obj:`False`)
138
        flow (string, optional): The flow direction when used in combination
rusty1s's avatar
rusty1s committed
139
140
            with message passing (:obj:`"source_to_target"` or
            :obj:`"target_to_source"`). (default: :obj:`"source_to_target"`)
141
142
        cosine (boolean, optional): If :obj:`True`, will use the Cosine
            distance instead of Euclidean distance to find nearest neighbors.
rusty1s's avatar
rusty1s committed
143
            (default: :obj:`False`)
rusty1s's avatar
rusty1s committed
144
145
146
        num_workers (int): Number of workers to use for computation. Has no
            effect in case :obj:`batch` is not :obj:`None`, or the input lies
            on the GPU. (default: :obj:`1`)
rusty1s's avatar
rusty1s committed
147
148
149

    :rtype: :class:`LongTensor`

rusty1s's avatar
rusty1s committed
150
    .. code-block:: python
rusty1s's avatar
rusty1s committed
151
152
153
154

        import torch
        from torch_cluster import knn_graph

rusty1s's avatar
rusty1s committed
155
156
157
        x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
        batch = torch.tensor([0, 0, 0, 0])
        edge_index = knn_graph(x, k=2, batch=batch, loop=False)
rusty1s's avatar
rusty1s committed
158
159
    """

rusty1s's avatar
rusty1s committed
160
    assert flow in ['source_to_target', 'target_to_source']
rusty1s's avatar
rusty1s committed
161
162
163
164
165
166
167
168
    edge_index = knn(x, x, k if loop else k + 1, batch, batch, cosine,
                     num_workers)

    if flow == 'source_to_target':
        row, col = edge_index[1], edge_index[0]
    else:
        row, col = edge_index[0], edge_index[1]

rusty1s's avatar
rusty1s committed
169
170
171
    if not loop:
        mask = row != col
        row, col = row[mask], col[mask]
rusty1s's avatar
rusty1s committed
172

rusty1s's avatar
rusty1s committed
173
    return torch.stack([row, col], dim=0)