knn.py 4.62 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
import torch
rusty1s's avatar
rusty1s committed
2
import scipy.spatial
rusty1s's avatar
rusty1s committed
3
4

if torch.cuda.is_available():
5
    import torch_cluster.knn_cuda
rusty1s's avatar
rusty1s committed
6
7


8
def knn(x, y, k, batch_x=None, batch_y=None, cosine=False):
rusty1s's avatar
rusty1s committed
9
10
    r"""Finds for each element in :obj:`y` the :obj:`k` nearest points in
    :obj:`x`.
rusty1s's avatar
rusty1s committed
11
12

    Args:
rusty1s's avatar
rusty1s committed
13
14
15
16
        x (Tensor): Node feature matrix
            :math:`\mathbf{X} \in \mathbb{R}^{N \times F}`.
        y (Tensor): Node feature matrix
            :math:`\mathbf{X} \in \mathbb{R}^{M \times F}`.
rusty1s's avatar
rusty1s committed
17
        k (int): The number of neighbors.
rusty1s's avatar
rusty1s committed
18
19
20
21
22
23
        batch_x (LongTensor, optional): Batch vector
            :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
            node to a specific example. (default: :obj:`None`)
        batch_y (LongTensor, optional): Batch vector
            :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^M`, which assigns each
            node to a specific example. (default: :obj:`None`)
rusty1s's avatar
rusty1s committed
24
25
26
        cosine (boolean, optional): If :obj:`True`, will use the cosine
            distance instead of euclidean distance to find nearest neighbors.
            (default: :obj:`False`)
rusty1s's avatar
rusty1s committed
27
28
29

    :rtype: :class:`LongTensor`

rusty1s's avatar
rusty1s committed
30
31
32
33
34
35
    .. testsetup::

        import torch
        from torch_cluster import knn

    .. testcode::
rusty1s's avatar
rusty1s committed
36
37

        >>> x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
rusty1s's avatar
rusty1s committed
38
        >>> batch_x = torch.tensor([0, 0, 0, 0])
rusty1s's avatar
rusty1s committed
39
        >>> y = torch.Tensor([[-1, 0], [1, 0]])
rusty1s's avatar
rusty1s committed
40
41
        >>> batch_x = torch.tensor([0, 0])
        >>> assign_index = knn(x, y, 2, batch_x, batch_y)
rusty1s's avatar
rusty1s committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
    """

    if batch_x is None:
        batch_x = x.new_zeros(x.size(0), dtype=torch.long)

    if batch_y is None:
        batch_y = y.new_zeros(y.size(0), dtype=torch.long)

    x = x.view(-1, 1) if x.dim() == 1 else x
    y = y.view(-1, 1) if y.dim() == 1 else y

    assert x.dim() == 2 and batch_x.dim() == 1
    assert y.dim() == 2 and batch_y.dim() == 1
    assert x.size(1) == y.size(1)
    assert x.size(0) == batch_x.size(0)
    assert y.size(0) == batch_y.size(0)

rusty1s's avatar
rusty1s committed
59
    if x.is_cuda:
60
        return torch_cluster.knn_cuda.knn(x, y, k, batch_x, batch_y, cosine)
rusty1s's avatar
rusty1s committed
61

rusty1s's avatar
rusty1s committed
62
63
64
    if cosine:
        raise NotImplementedError('Cosine distance not implemented for CPU')

rusty1s's avatar
rusty1s committed
65
66
67
68
69
70
71
72
73
74
75
    # Rescale x and y.
    min_xy = min(x.min().item(), y.min().item())
    x, y = x - min_xy, y - min_xy

    max_xy = max(x.max().item(), y.max().item())
    x, y, = x / max_xy, y / max_xy

    # Concat batch/features to ensure no cross-links between examples exist.
    x = torch.cat([x, 2 * x.size(1) * batch_x.view(-1, 1).to(x.dtype)], dim=-1)
    y = torch.cat([y, 2 * y.size(1) * batch_y.view(-1, 1).to(y.dtype)], dim=-1)

rusty1s's avatar
rusty1s committed
76
77
78
    tree = scipy.spatial.cKDTree(x.detach().numpy())
    dist, col = tree.query(y.detach().cpu(), k=k,
                           distance_upper_bound=x.size(1))
79
80
81
    dist = torch.from_numpy(dist).to(x.dtype)
    col = torch.from_numpy(col).to(torch.long)
    row = torch.arange(col.size(0), dtype=torch.long).view(-1, 1).repeat(1, k)
rusty1s's avatar
rusty1s committed
82
    mask = ~torch.isinf(dist).view(-1)
rusty1s's avatar
rusty1s committed
83
84
85
    row, col = row.view(-1)[mask], col.view(-1)[mask]

    return torch.stack([row, col], dim=0)
rusty1s's avatar
rusty1s committed
86
87


rusty1s's avatar
rusty1s committed
88
89
def knn_graph(x, k, batch=None, loop=False, flow='source_to_target',
              cosine=False):
rusty1s's avatar
rusty1s committed
90
    r"""Computes graph edges to the nearest :obj:`k` points.
rusty1s's avatar
rusty1s committed
91
92

    Args:
rusty1s's avatar
rusty1s committed
93
94
        x (Tensor): Node feature matrix
            :math:`\mathbf{X} \in \mathbb{R}^{N \times F}`.
rusty1s's avatar
rusty1s committed
95
        k (int): The number of neighbors.
rusty1s's avatar
rusty1s committed
96
97
98
        batch (LongTensor, optional): Batch vector
            :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
            node to a specific example. (default: :obj:`None`)
rusty1s's avatar
rusty1s committed
99
100
        loop (bool, optional): If :obj:`True`, the graph will contain
            self-loops. (default: :obj:`False`)
rusty1s's avatar
rusty1s committed
101
102
103
        flow (string, optional): The flow direction when using in combination
            with message passing (:obj:`"source_to_target"` or
            :obj:`"target_to_source"`). (default: :obj:`"source_to_target"`)
rusty1s's avatar
rusty1s committed
104
105
106
        cosine (boolean, optional): If :obj:`True`, will use the cosine
            distance instead of euclidean distance to find nearest neighbors.
            (default: :obj:`False`)
rusty1s's avatar
rusty1s committed
107
108
109

    :rtype: :class:`LongTensor`

rusty1s's avatar
rusty1s committed
110
111
112
113
114
115
    .. testsetup::

        import torch
        from torch_cluster import knn_graph

    .. testcode::
rusty1s's avatar
rusty1s committed
116
117

        >>> x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
rusty1s's avatar
rusty1s committed
118
119
        >>> batch = torch.tensor([0, 0, 0, 0])
        >>> edge_index = knn_graph(x, k=2, batch=batch, loop=False)
rusty1s's avatar
rusty1s committed
120
121
    """

rusty1s's avatar
rusty1s committed
122
    assert flow in ['source_to_target', 'target_to_source']
123
    row, col = knn(x, x, k if loop else k + 1, batch, batch, cosine=cosine)
rusty1s's avatar
rusty1s committed
124
    row, col = (col, row) if flow == 'source_to_target' else (row, col)
rusty1s's avatar
rusty1s committed
125
126
127
    if not loop:
        mask = row != col
        row, col = row[mask], col[mask]
rusty1s's avatar
rusty1s committed
128
    return torch.stack([row, col], dim=0)