knn.py 5.18 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
from typing import Optional

rusty1s's avatar
rusty1s committed
3
import torch
4
import numpy as np
rusty1s's avatar
rusty1s committed
5
6


rusty1s's avatar
rusty1s committed
7
8
9
def knn(x: torch.Tensor, y: torch.Tensor, k: int,
        batch_x: Optional[torch.Tensor] = None,
        batch_y: Optional[torch.Tensor] = None,
10
        cosine: bool = False, n_threads: int = 1) -> torch.Tensor:
rusty1s's avatar
rusty1s committed
11
12
    r"""Finds for each element in :obj:`y` the :obj:`k` nearest points in
    :obj:`x`.
rusty1s's avatar
rusty1s committed
13
14

    Args:
rusty1s's avatar
rusty1s committed
15
16
17
18
        x (Tensor): Node feature matrix
            :math:`\mathbf{X} \in \mathbb{R}^{N \times F}`.
        y (Tensor): Node feature matrix
            :math:`\mathbf{X} \in \mathbb{R}^{M \times F}`.
rusty1s's avatar
rusty1s committed
19
        k (int): The number of neighbors.
rusty1s's avatar
rusty1s committed
20
21
22
23
24
25
        batch_x (LongTensor, optional): Batch vector
            :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
            node to a specific example. (default: :obj:`None`)
        batch_y (LongTensor, optional): Batch vector
            :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^M`, which assigns each
            node to a specific example. (default: :obj:`None`)
rusty1s's avatar
rusty1s committed
26
27
28
        cosine (boolean, optional): If :obj:`True`, will use the cosine
            distance instead of euclidean distance to find nearest neighbors.
            (default: :obj:`False`)
rusty1s's avatar
rusty1s committed
29
30
31

    :rtype: :class:`LongTensor`

rusty1s's avatar
rusty1s committed
32
    .. code-block:: python
rusty1s's avatar
rusty1s committed
33
34
35
36

        import torch
        from torch_cluster import knn

rusty1s's avatar
rusty1s committed
37
38
39
40
41
        x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
        batch_x = torch.tensor([0, 0, 0, 0])
        y = torch.Tensor([[-1, 0], [1, 0]])
        batch_x = torch.tensor([0, 0])
        assign_index = knn(x, y, 2, batch_x, batch_y)
rusty1s's avatar
rusty1s committed
42
43
44
45
46
    """

    x = x.view(-1, 1) if x.dim() == 1 else x
    y = y.view(-1, 1) if y.dim() == 1 else y

47
48
49
    def is_sorted(x):
        return (np.diff(x.detach().cpu()) >= 0).all()

rusty1s's avatar
rusty1s committed
50
    if x.is_cuda:
rusty1s's avatar
rusty1s committed
51
52
        if batch_x is not None:
            assert x.size(0) == batch_x.numel()
53
            assert is_sorted(batch_x)
rusty1s's avatar
rusty1s committed
54
55
56
57
58
59
            batch_size = int(batch_x.max()) + 1

            deg = x.new_zeros(batch_size, dtype=torch.long)
            deg.scatter_add_(0, batch_x, torch.ones_like(batch_x))

            ptr_x = deg.new_zeros(batch_size + 1)
rusty1s's avatar
fix  
rusty1s committed
60
            torch.cumsum(deg, 0, out=ptr_x[1:])
rusty1s's avatar
rusty1s committed
61
62
63
64
65
        else:
            ptr_x = torch.tensor([0, x.size(0)], device=x.device)

        if batch_y is not None:
            assert y.size(0) == batch_y.numel()
66
            assert is_sorted(batch_y)
rusty1s's avatar
fix  
rusty1s committed
67
            batch_size = int(batch_y.max()) + 1
rusty1s's avatar
rusty1s committed
68
69
70
71
72

            deg = y.new_zeros(batch_size, dtype=torch.long)
            deg.scatter_add_(0, batch_y, torch.ones_like(batch_y))

            ptr_y = deg.new_zeros(batch_size + 1)
rusty1s's avatar
fix  
rusty1s committed
73
            torch.cumsum(deg, 0, out=ptr_y[1:])
rusty1s's avatar
rusty1s committed
74
75
76
        else:
            ptr_y = torch.tensor([0, y.size(0)], device=y.device)

77
78
        return torch.ops.torch_cluster.knn(x, y, ptr_x,
                                           ptr_y, k, cosine, n_threads)
rusty1s's avatar
rusty1s committed
79
    else:
80
81
82
83
84
        assert x.dim() == 2
        if batch_x is not None:
            assert batch_x.dim() == 1
            assert is_sorted(batch_x)
            assert x.size(0) == batch_x.size(0)
rusty1s's avatar
rusty1s committed
85

86
87
88
89
90
        assert y.dim() == 2
        if batch_y is not None:
            assert batch_y.dim() == 1
            assert is_sorted(batch_y)
            assert y.size(0) == batch_y.size(0)
rusty1s's avatar
rusty1s committed
91
92
93
94
95
        assert x.size(1) == y.size(1)

        if cosine:
            raise NotImplementedError('`cosine` argument not supported on CPU')

96
97
        return torch.ops.torch_cluster.knn(x, y, batch_x, batch_y,
                                           k, cosine, n_threads)
rusty1s's avatar
rusty1s committed
98
99
100
101


def knn_graph(x: torch.Tensor, k: int, batch: Optional[torch.Tensor] = None,
              loop: bool = False, flow: str = 'source_to_target',
102
              cosine: bool = False, n_threads: int = 1) -> torch.Tensor:
rusty1s's avatar
rusty1s committed
103
    r"""Computes graph edges to the nearest :obj:`k` points.
rusty1s's avatar
rusty1s committed
104
105

    Args:
rusty1s's avatar
rusty1s committed
106
107
        x (Tensor): Node feature matrix
            :math:`\mathbf{X} \in \mathbb{R}^{N \times F}`.
rusty1s's avatar
rusty1s committed
108
        k (int): The number of neighbors.
rusty1s's avatar
rusty1s committed
109
110
111
        batch (LongTensor, optional): Batch vector
            :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
            node to a specific example. (default: :obj:`None`)
rusty1s's avatar
rusty1s committed
112
113
        loop (bool, optional): If :obj:`True`, the graph will contain
            self-loops. (default: :obj:`False`)
rusty1s's avatar
rusty1s committed
114
115
116
        flow (string, optional): The flow direction when using in combination
            with message passing (:obj:`"source_to_target"` or
            :obj:`"target_to_source"`). (default: :obj:`"source_to_target"`)
rusty1s's avatar
rusty1s committed
117
118
119
        cosine (boolean, optional): If :obj:`True`, will use the cosine
            distance instead of euclidean distance to find nearest neighbors.
            (default: :obj:`False`)
rusty1s's avatar
rusty1s committed
120
121
122

    :rtype: :class:`LongTensor`

rusty1s's avatar
rusty1s committed
123
    .. code-block:: python
rusty1s's avatar
rusty1s committed
124
125
126
127

        import torch
        from torch_cluster import knn_graph

rusty1s's avatar
rusty1s committed
128
129
130
        x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
        batch = torch.tensor([0, 0, 0, 0])
        edge_index = knn_graph(x, k=2, batch=batch, loop=False)
rusty1s's avatar
rusty1s committed
131
132
    """

rusty1s's avatar
rusty1s committed
133
    assert flow in ['source_to_target', 'target_to_source']
134
135
    row, col = knn(x, x, k if loop else k + 1, batch, batch,
                   cosine=cosine, n_threads=n_threads)
rusty1s's avatar
rusty1s committed
136
    row, col = (col, row) if flow == 'source_to_target' else (row, col)
rusty1s's avatar
rusty1s committed
137
138
139
    if not loop:
        mask = row != col
        row, col = row[mask], col[mask]
rusty1s's avatar
rusty1s committed
140
    return torch.stack([row, col], dim=0)