"vscode:/vscode.git/clone" did not exist on "8e6fa622a9f418a43b5b8b28f9fd96b4fe8b4598"
README.md 7.17 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
[pypi-image]: https://badge.fury.io/py/torch-cluster.svg
[pypi-url]: https://pypi.python.org/pypi/torch-cluster
[build-image]: https://travis-ci.org/rusty1s/pytorch_cluster.svg?branch=master
[build-url]: https://travis-ci.org/rusty1s/pytorch_cluster
[coverage-image]: https://codecov.io/gh/rusty1s/pytorch_cluster/branch/master/graph/badge.svg
[coverage-url]: https://codecov.io/github/rusty1s/pytorch_cluster?branch=master

rusty1s's avatar
rusty1s committed
8
# PyTorch Cluster
rusty1s's avatar
rusty1s committed
9

rusty1s's avatar
rusty1s committed
10
11
12
13
[![PyPI Version][pypi-image]][pypi-url]
[![Build Status][build-image]][build-url]
[![Code Coverage][coverage-image]][coverage-url]

rusty1s's avatar
rusty1s committed
14
15
--------------------------------------------------------------------------------

rusty1s's avatar
rusty1s committed
16
This package consists of a small extension library of highly optimized graph cluster algorithms for the use in [PyTorch](http://pytorch.org/).
rusty1s's avatar
typo  
rusty1s committed
17
The package consists of the following clustering algorithms:
rusty1s's avatar
rusty1s committed
18

rusty1s's avatar
credit  
rusty1s committed
19
* **[Graclus](#graclus)** from Dhillon *et al.*: [Weighted Graph Cuts without Eigenvectors: A Multilevel Approach](http://www.cs.utexas.edu/users/inderjit/public_papers/multilevel_pami.pdf) (PAMI 2007)
rusty1s's avatar
rusty1s committed
20
* **[Voxel Grid Pooling](#voxelgrid)** from, *e.g.*, Simonovsky and Komodakis: [Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs](https://arxiv.org/abs/1704.02901) (CVPR 2017)
rusty1s's avatar
rusty1s committed
21
22
* **[Iterative Farthest Point Sampling](#farthestpointsampling)** from, *e.g.* Qi *et al.*: [PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space](https://arxiv.org/abs/1706.02413) (NIPS 2017)
* **[k-NN](#knn-graph)** and **[Radius](#radius-graph)** graph generation
rusty1s's avatar
rusty1s committed
23
* Clustering based on **[Nearest](#nearest)** points
rusty1s's avatar
rusty1s committed
24
* **[Random Walk Sampling](#randomwalk-sampling)** from, *e.g.*, Grover and Leskovec: [node2vec: Scalable Feature Learning for Networks](https://arxiv.org/abs/1607.00653) (KDD 2016)
rusty1s's avatar
rusty1s committed
25
26
27
28
29

All included operations work on varying data types and are implemented both for CPU and GPU.

## Installation

rusty1s's avatar
rusty1s committed
30
31
32
### Binaries

We provide pip wheels for all major OS/PyTorch/CUDA combinations, see [here](https://s3.eu-central-1.amazonaws.com/pytorch-geometric.com/whl/index.html).
rusty1s's avatar
rusty1s committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

#### PyTorch 1.5.0

To install the binaries for PyTorch 1.5.0, simply run

```
pip install torch-cluster==latest+${CUDA} -f https://pytorch-geometric.com/whl/torch-1.5.0.html
```

where `${CUDA}` should be replaced by either `cpu`, `cu92`, `cu101` or `cu102` depending on your PyTorch installation.

|             | `cpu` | `cu92` | `cu101` | `cu102` |
|-------------|-------|--------|---------|---------|
| **Linux**   | ✅    | ✅     | ✅      | ✅      |
| **Windows** | ✅    | ❌     | ✅      | ✅      |
| **macOS**   | ✅    |        |         |         |

#### PyTorch 1.4.0

To install the binaries for PyTorch 1.4.0, simply run
rusty1s's avatar
rusty1s committed
53
54

```
Matthias Fey's avatar
Matthias Fey committed
55
pip install torch-cluster==latest+${CUDA} -f https://pytorch-geometric.com/whl/torch-1.4.0.html
rusty1s's avatar
rusty1s committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
```

where `${CUDA}` should be replaced by either `cpu`, `cu92`, `cu100` or `cu101` depending on your PyTorch installation.

|             | `cpu` | `cu92` | `cu100` | `cu101` |
|-------------|-------|--------|---------|---------|
| **Linux**   | ✅    | ✅     | ✅      | ✅      |
| **Windows** | ✅    | ❌     | ❌      | ✅      |
| **macOS**   | ✅    |        |         |         |

### From source

Ensure that at least PyTorch 1.4.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*:

```
$ python -c "import torch; print(torch.__version__)"
>>> 1.4.0
rusty1s's avatar
rusty1s committed
73
74

$ python -c "import torch; print(torch.__version__)"
rusty1s's avatar
rusty1s committed
75
>>> 1.1.0
rusty1s's avatar
rusty1s committed
76
77
78
79
80

$ echo $PATH
>>> /usr/local/cuda/bin:...

$ echo $CPATH
rusty1s's avatar
rusty1s committed
81
>>> /usr/local/cuda/include:...
rusty1s's avatar
rusty1s committed
82
83
```

rusty1s's avatar
rusty1s committed
84
85
86
Then run:

```
rusty1s's avatar
rusty1s committed
87
pip install torch-cluster
rusty1s's avatar
rusty1s committed
88
89
```

rusty1s's avatar
rusty1s committed
90
When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail.
rusty1s's avatar
rusty1s committed
91
92
93
94
95
96
97
In this case, ensure that the compute capabilities are set via `TORCH_CUDA_ARCH_LIST`, *e.g.*:

```
export TORCH_CUDA_ARCH_LIST = "6.0 6.1 7.2+PTX 7.5+PTX"
```

## Functions
rusty1s's avatar
rusty1s committed
98

rusty1s's avatar
rusty1s committed
99
### Graclus
rusty1s's avatar
rusty1s committed
100
101

A greedy clustering algorithm of picking an unmarked vertex and matching it with one its unmarked neighbors (that maximizes its edge weight).
rusty1s's avatar
credit  
rusty1s committed
102
The GPU algorithm is adapted from Fagginger Auer and Bisseling: [A GPU Algorithm for Greedy Graph Matching](http://www.staff.science.uu.nl/~bisse101/Articles/match12.pdf) (LNCS 2012)
rusty1s's avatar
rusty1s committed
103
104
105
106
107

```python
import torch
from torch_cluster import graclus_cluster

rusty1s's avatar
rusty1s committed
108
109
row = torch.tensor([0, 1, 1, 2])
col = torch.tensor([1, 0, 2, 1])
rusty1s's avatar
rusty1s committed
110
weight = torch.tensor([1., 1., 1., 1.])  # Optional edge weights.
rusty1s's avatar
rusty1s committed
111
112
113
114
115
116

cluster = graclus_cluster(row, col, weight)
```

```
print(cluster)
rusty1s's avatar
rusty1s committed
117
tensor([0, 0, 1])
rusty1s's avatar
rusty1s committed
118
119
```

rusty1s's avatar
rusty1s committed
120
### VoxelGrid
rusty1s's avatar
rusty1s committed
121
122

A clustering algorithm, which overlays a regular grid of user-defined size over a point cloud and clusters all points within a voxel.
rusty1s's avatar
rusty1s committed
123
124
125
126
127

```python
import torch
from torch_cluster import grid_cluster

rusty1s's avatar
rusty1s committed
128
pos = torch.tensor([[0., 0.], [11., 9.], [2., 8.], [2., 2.], [8., 3.]])
rusty1s's avatar
new api  
rusty1s committed
129
size = torch.Tensor([5, 5])
rusty1s's avatar
rusty1s committed
130
131
132
133
134
135

cluster = grid_cluster(pos, size)
```

```
print(cluster)
rusty1s's avatar
rusty1s committed
136
tensor([0, 5, 3, 0, 1])
rusty1s's avatar
rusty1s committed
137
```
rusty1s's avatar
rusty1s committed
138

rusty1s's avatar
rusty1s committed
139
### FarthestPointSampling
rusty1s's avatar
rusty1s committed
140

rusty1s's avatar
rusty1s committed
141
A sampling algorithm, which iteratively samples the most distant point with regard to the rest points.
rusty1s's avatar
rusty1s committed
142
143
144
145
146

```python
import torch
from torch_cluster import fps

rusty1s's avatar
rusty1s committed
147
x = torch.tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.]])
rusty1s's avatar
rusty1s committed
148
batch = torch.tensor([0, 0, 0, 0])
rusty1s's avatar
rusty1s committed
149
index = fps(x, batch, ratio=0.5, random_start=False)
rusty1s's avatar
rusty1s committed
150
151
152
```

```
JunZe Yu's avatar
JunZe Yu committed
153
print(index)
rusty1s's avatar
rusty1s committed
154
155
156
tensor([0, 3])
```

rusty1s's avatar
rusty1s committed
157
### kNN-Graph
rusty1s's avatar
rusty1s committed
158

rusty1s's avatar
rusty1s committed
159
Computes graph edges to the nearest *k* points.
rusty1s's avatar
rusty1s committed
160
161
162
163
164

```python
import torch
from torch_cluster import knn_graph

rusty1s's avatar
rusty1s committed
165
x = torch.tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.]])
rusty1s's avatar
rusty1s committed
166
167
168
169
170
171
batch = torch.tensor([0, 0, 0, 0])
edge_index = knn_graph(x, k=2, batch=batch, loop=False)
```

```
print(edge_index)
Matthias Fey's avatar
Matthias Fey committed
172
173
tensor([[1, 2, 0, 3, 0, 3, 1, 2],
        [0, 0, 1, 1, 2, 2, 3, 3]])
rusty1s's avatar
rusty1s committed
174
175
```

rusty1s's avatar
rusty1s committed
176
### Radius-Graph
rusty1s's avatar
rusty1s committed
177

rusty1s's avatar
rusty1s committed
178
Computes graph edges to all points within a given distance.
rusty1s's avatar
rusty1s committed
179
180
181
182
183

```python
import torch
from torch_cluster import radius_graph

rusty1s's avatar
rusty1s committed
184
x = torch.tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.]])
rusty1s's avatar
rusty1s committed
185
186
187
188
189
190
batch = torch.tensor([0, 0, 0, 0])
edge_index = radius_graph(x, r=1.5, batch=batch, loop=False)
```

```
print(edge_index)
Matthias Fey's avatar
Matthias Fey committed
191
192
tensor([[1, 2, 0, 3, 0, 3, 1, 2],
        [0, 0, 1, 1, 2, 2, 3, 3]])
rusty1s's avatar
rusty1s committed
193
194
```

rusty1s's avatar
rusty1s committed
195
### Nearest
rusty1s's avatar
rusty1s committed
196

rusty1s's avatar
rusty1s committed
197
Clusters points in *x* together which are nearest to a given query point in *y*.
rusty1s's avatar
rusty1s committed
198
199
200
201
202
203

```python
import torch
from torch_cluster import nearest

x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
rusty1s's avatar
rusty1s committed
204
205
206
207
batch_x = torch.tensor([0, 0, 0, 0])
y = torch.Tensor([[-1, 0], [1, 0]])
batch_y = torch.tensor([0, 0])
cluster = nearest(x, y, batch_x, batch_y)
rusty1s's avatar
rusty1s committed
208
209
210
211
212
213
214
```

```
print(cluster)
tensor([0, 0, 1, 1])
```

rusty1s's avatar
rusty1s committed
215
### RandomWalk-Sampling
rusty1s's avatar
rusty1s committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

Samples random walks of length `walk_length` from all node indices in `start` in the graph given by `(row, col)`.

```python
import torch
from torch_cluster import random_walk

row = torch.tensor([0, 1, 1, 1, 2, 2, 3, 3, 4, 4])
col = torch.tensor([1, 0, 2, 3, 1, 4, 1, 4, 2, 3])
start = torch.tensor([0, 1, 2, 3, 4])

walk = random_walk(row, col, start, walk_length=3)
```

```
print(walk)
Maurits's avatar
Maurits committed
232
tensor([[0, 1, 2, 4],
rusty1s's avatar
rusty1s committed
233
        [1, 3, 4, 2],
Maurits's avatar
Maurits committed
234
235
236
        [2, 4, 2, 1],
        [3, 4, 2, 4],
        [4, 3, 1, 0]])
rusty1s's avatar
rusty1s committed
237
238
```

rusty1s's avatar
rusty1s committed
239
240
241
242
243
## Running tests

```
python setup.py test
```
rusty1s's avatar
rusty1s committed
244
245
246
247
248
249
250
251
252
253
254
255
256

## C++ API

`torch-cluster` also offers a C++ API that contains C++ equivalent of python models.

```
mkdir build
cd build
# Add -DWITH_CUDA=on support for the CUDA if needed
cmake ..
make
make install
```