README.md 9.04 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
[pypi-image]: https://badge.fury.io/py/torch-cluster.svg
[pypi-url]: https://pypi.python.org/pypi/torch-cluster
[build-image]: https://travis-ci.org/rusty1s/pytorch_cluster.svg?branch=master
[build-url]: https://travis-ci.org/rusty1s/pytorch_cluster
[coverage-image]: https://codecov.io/gh/rusty1s/pytorch_cluster/branch/master/graph/badge.svg
[coverage-url]: https://codecov.io/github/rusty1s/pytorch_cluster?branch=master

rusty1s's avatar
rusty1s committed
8
# PyTorch Cluster
rusty1s's avatar
rusty1s committed
9

rusty1s's avatar
rusty1s committed
10
11
12
13
[![PyPI Version][pypi-image]][pypi-url]
[![Build Status][build-image]][build-url]
[![Code Coverage][coverage-image]][coverage-url]

rusty1s's avatar
rusty1s committed
14
15
--------------------------------------------------------------------------------

rusty1s's avatar
rusty1s committed
16
This package consists of a small extension library of highly optimized graph cluster algorithms for the use in [PyTorch](http://pytorch.org/).
rusty1s's avatar
typo  
rusty1s committed
17
The package consists of the following clustering algorithms:
rusty1s's avatar
rusty1s committed
18

rusty1s's avatar
credit  
rusty1s committed
19
* **[Graclus](#graclus)** from Dhillon *et al.*: [Weighted Graph Cuts without Eigenvectors: A Multilevel Approach](http://www.cs.utexas.edu/users/inderjit/public_papers/multilevel_pami.pdf) (PAMI 2007)
rusty1s's avatar
rusty1s committed
20
* **[Voxel Grid Pooling](#voxelgrid)** from, *e.g.*, Simonovsky and Komodakis: [Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs](https://arxiv.org/abs/1704.02901) (CVPR 2017)
rusty1s's avatar
rusty1s committed
21
22
* **[Iterative Farthest Point Sampling](#farthestpointsampling)** from, *e.g.* Qi *et al.*: [PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space](https://arxiv.org/abs/1706.02413) (NIPS 2017)
* **[k-NN](#knn-graph)** and **[Radius](#radius-graph)** graph generation
rusty1s's avatar
rusty1s committed
23
* Clustering based on **[Nearest](#nearest)** points
rusty1s's avatar
rusty1s committed
24
* **[Random Walk Sampling](#randomwalk-sampling)** from, *e.g.*, Grover and Leskovec: [node2vec: Scalable Feature Learning for Networks](https://arxiv.org/abs/1607.00653) (KDD 2016)
rusty1s's avatar
rusty1s committed
25
26
27
28
29

All included operations work on varying data types and are implemented both for CPU and GPU.

## Installation

rusty1s's avatar
rusty1s committed
30
31
32
### Binaries

We provide pip wheels for all major OS/PyTorch/CUDA combinations, see [here](https://s3.eu-central-1.amazonaws.com/pytorch-geometric.com/whl/index.html).
rusty1s's avatar
rusty1s committed
33

rusty1s's avatar
rusty1s committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#### PyTorch 1.8.0

To install the binaries for PyTorch 1.8.0, simply run

```
pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.8.0+${CUDA}.html
```

where `${CUDA}` should be replaced by either `cpu`, `cu101`, `cu102`, or `cu111` depending on your PyTorch installation.

|             | `cpu` | `cu101` | `cu102` | `cu111` |
|-------------|-------|---------|---------|---------|
| **Linux**   | ✅    | ✅      | ✅      | ✅      |
| **Windows** | ✅    | ✅      | ✅      | ✅      |
| **macOS**   | ✅    |         |         |         |


rusty1s's avatar
rusty1s committed
51
#### PyTorch 1.7.0
rusty1s's avatar
rusty1s committed
52

rusty1s's avatar
rusty1s committed
53
To install the binaries for PyTorch 1.7.0, simply run
rusty1s's avatar
rusty1s committed
54
55

```
56
pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-1.7.0+${CUDA}.html
rusty1s's avatar
rusty1s committed
57
58
```

rusty1s's avatar
rusty1s committed
59
where `${CUDA}` should be replaced by either `cpu`, `cu92`, `cu101`, `cu102`, or `cu110` depending on your PyTorch installation.
rusty1s's avatar
rusty1s committed
60

rusty1s's avatar
rusty1s committed
61
62
63
64
65
|             | `cpu` | `cu92` | `cu101` | `cu102` | `cu110` |
|-------------|-------|--------|---------|---------|---------|
| **Linux**   | ✅    | ✅     | ✅      | ✅      | ✅      |
| **Windows** | ✅    | ❌     | ✅      | ✅      | ✅      |
| **macOS**   | ✅    |        |         |         |         |
rusty1s's avatar
rusty1s committed
66

rusty1s's avatar
rusty1s committed
67
**Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0 and PyTorch 1.6.0 (following the same procedure).
rusty1s's avatar
rusty1s committed
68
69
70
71
72
73
74
75

### From source

Ensure that at least PyTorch 1.4.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*:

```
$ python -c "import torch; print(torch.__version__)"
>>> 1.4.0
rusty1s's avatar
rusty1s committed
76
77

$ python -c "import torch; print(torch.__version__)"
rusty1s's avatar
rusty1s committed
78
>>> 1.1.0
rusty1s's avatar
rusty1s committed
79
80
81
82
83

$ echo $PATH
>>> /usr/local/cuda/bin:...

$ echo $CPATH
rusty1s's avatar
rusty1s committed
84
>>> /usr/local/cuda/include:...
rusty1s's avatar
rusty1s committed
85
86
```

rusty1s's avatar
rusty1s committed
87
88
89
Then run:

```
rusty1s's avatar
rusty1s committed
90
pip install torch-cluster
rusty1s's avatar
rusty1s committed
91
92
```

rusty1s's avatar
rusty1s committed
93
When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail.
rusty1s's avatar
rusty1s committed
94
95
96
97
98
99
100
In this case, ensure that the compute capabilities are set via `TORCH_CUDA_ARCH_LIST`, *e.g.*:

```
export TORCH_CUDA_ARCH_LIST = "6.0 6.1 7.2+PTX 7.5+PTX"
```

## Functions
rusty1s's avatar
rusty1s committed
101

rusty1s's avatar
rusty1s committed
102
### Graclus
rusty1s's avatar
rusty1s committed
103
104

A greedy clustering algorithm of picking an unmarked vertex and matching it with one its unmarked neighbors (that maximizes its edge weight).
rusty1s's avatar
credit  
rusty1s committed
105
The GPU algorithm is adapted from Fagginger Auer and Bisseling: [A GPU Algorithm for Greedy Graph Matching](http://www.staff.science.uu.nl/~bisse101/Articles/match12.pdf) (LNCS 2012)
rusty1s's avatar
rusty1s committed
106
107
108
109
110

```python
import torch
from torch_cluster import graclus_cluster

rusty1s's avatar
rusty1s committed
111
112
row = torch.tensor([0, 1, 1, 2])
col = torch.tensor([1, 0, 2, 1])
rusty1s's avatar
rusty1s committed
113
weight = torch.tensor([1., 1., 1., 1.])  # Optional edge weights.
rusty1s's avatar
rusty1s committed
114
115
116
117
118
119

cluster = graclus_cluster(row, col, weight)
```

```
print(cluster)
rusty1s's avatar
rusty1s committed
120
tensor([0, 0, 1])
rusty1s's avatar
rusty1s committed
121
122
```

rusty1s's avatar
rusty1s committed
123
### VoxelGrid
rusty1s's avatar
rusty1s committed
124
125

A clustering algorithm, which overlays a regular grid of user-defined size over a point cloud and clusters all points within a voxel.
rusty1s's avatar
rusty1s committed
126
127
128
129
130

```python
import torch
from torch_cluster import grid_cluster

rusty1s's avatar
rusty1s committed
131
pos = torch.tensor([[0., 0.], [11., 9.], [2., 8.], [2., 2.], [8., 3.]])
rusty1s's avatar
new api  
rusty1s committed
132
size = torch.Tensor([5, 5])
rusty1s's avatar
rusty1s committed
133
134
135
136
137
138

cluster = grid_cluster(pos, size)
```

```
print(cluster)
rusty1s's avatar
rusty1s committed
139
tensor([0, 5, 3, 0, 1])
rusty1s's avatar
rusty1s committed
140
```
rusty1s's avatar
rusty1s committed
141

rusty1s's avatar
rusty1s committed
142
### FarthestPointSampling
rusty1s's avatar
rusty1s committed
143

rusty1s's avatar
rusty1s committed
144
A sampling algorithm, which iteratively samples the most distant point with regard to the rest points.
rusty1s's avatar
rusty1s committed
145
146
147
148
149

```python
import torch
from torch_cluster import fps

rusty1s's avatar
rusty1s committed
150
x = torch.tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.]])
rusty1s's avatar
rusty1s committed
151
batch = torch.tensor([0, 0, 0, 0])
rusty1s's avatar
rusty1s committed
152
index = fps(x, batch, ratio=0.5, random_start=False)
rusty1s's avatar
rusty1s committed
153
154
155
```

```
JunZe Yu's avatar
JunZe Yu committed
156
print(index)
rusty1s's avatar
rusty1s committed
157
158
159
tensor([0, 3])
```

rusty1s's avatar
rusty1s committed
160
### kNN-Graph
rusty1s's avatar
rusty1s committed
161

rusty1s's avatar
rusty1s committed
162
Computes graph edges to the nearest *k* points.
rusty1s's avatar
rusty1s committed
163

164
165
166
**Args:**

* **x** *(Tensor)*: Node feature matrix of shape `[N, F]`.
luwei0917's avatar
luwei0917 committed
167
* **k** *(int)*: The number of neighbors.
168
169
170
171
172
173
* **batch** *(LongTensor, optional)*: Batch vector of shape `[N]`, which assigns each node to a specific example. `batch` needs to be sorted. (default: `None`)
* **loop** *(bool, optional)*: If `True`, the graph will contain self-loops. (default: `False`)
* **flow** *(string, optional)*: The flow direction when using in combination with message passing (`"source_to_target"` or `"target_to_source"`). (default: `"source_to_target"`)
* **cosine** *(boolean, optional)*: If `True`, will use the Cosine distance instead of Euclidean distance to find nearest neighbors. (default: `False`)
* **num_workers** *(int)*: Number of workers to use for computation. Has no effect in case `batch` is not `None`, or the input lies on the GPU. (default: `1`)

rusty1s's avatar
rusty1s committed
174
175
176
177
```python
import torch
from torch_cluster import knn_graph

rusty1s's avatar
rusty1s committed
178
x = torch.tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.]])
rusty1s's avatar
rusty1s committed
179
180
181
182
183
184
batch = torch.tensor([0, 0, 0, 0])
edge_index = knn_graph(x, k=2, batch=batch, loop=False)
```

```
print(edge_index)
Matthias Fey's avatar
Matthias Fey committed
185
186
tensor([[1, 2, 0, 3, 0, 3, 1, 2],
        [0, 0, 1, 1, 2, 2, 3, 3]])
rusty1s's avatar
rusty1s committed
187
188
```

rusty1s's avatar
rusty1s committed
189
### Radius-Graph
rusty1s's avatar
rusty1s committed
190

rusty1s's avatar
rusty1s committed
191
Computes graph edges to all points within a given distance.
rusty1s's avatar
rusty1s committed
192

193
194
195
196
197
198
199
200
201
202
**Args:**

* **x** *(Tensor)*: Node feature matrix of shape `[N, F]`.
* **r** *(float)*: The radius.
* **batch** *(LongTensor, optional)*: Batch vector of shape `[N]`, which assigns each node to a specific example. `batch` needs to be sorted. (default: `None`)
* **loop** *(bool, optional)*: If `True`, the graph will contain self-loops. (default: `False`)
* **max_num_neighbors** *(int, optional)*: The maximum number of neighbors to return for each element. (default: `32`)
* **flow** *(string, optional)*: The flow direction when using in combination with message passing (`"source_to_target"` or `"target_to_source"`). (default: `"source_to_target"`)
* **num_workers** *(int)*: Number of workers to use for computation. Has no effect in case `batch` is not `None`, or the input lies on the GPU. (default: `1`)

rusty1s's avatar
rusty1s committed
203
204
205
206
```python
import torch
from torch_cluster import radius_graph

rusty1s's avatar
rusty1s committed
207
x = torch.tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.]])
rusty1s's avatar
rusty1s committed
208
batch = torch.tensor([0, 0, 0, 0])
rusty1s's avatar
rusty1s committed
209
edge_index = radius_graph(x, r=2.5, batch=batch, loop=False)
rusty1s's avatar
rusty1s committed
210
211
212
213
```

```
print(edge_index)
Matthias Fey's avatar
Matthias Fey committed
214
215
tensor([[1, 2, 0, 3, 0, 3, 1, 2],
        [0, 0, 1, 1, 2, 2, 3, 3]])
rusty1s's avatar
rusty1s committed
216
217
```

rusty1s's avatar
rusty1s committed
218
### Nearest
rusty1s's avatar
rusty1s committed
219

rusty1s's avatar
rusty1s committed
220
Clusters points in *x* together which are nearest to a given query point in *y*.
rusty1s's avatar
rusty1s committed
221
`batch_{x,y}` vectors need to be sorted.
rusty1s's avatar
rusty1s committed
222
223
224
225
226
227

```python
import torch
from torch_cluster import nearest

x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
rusty1s's avatar
rusty1s committed
228
229
230
231
batch_x = torch.tensor([0, 0, 0, 0])
y = torch.Tensor([[-1, 0], [1, 0]])
batch_y = torch.tensor([0, 0])
cluster = nearest(x, y, batch_x, batch_y)
rusty1s's avatar
rusty1s committed
232
233
234
235
236
237
238
```

```
print(cluster)
tensor([0, 0, 1, 1])
```

rusty1s's avatar
rusty1s committed
239
### RandomWalk-Sampling
rusty1s's avatar
rusty1s committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

Samples random walks of length `walk_length` from all node indices in `start` in the graph given by `(row, col)`.

```python
import torch
from torch_cluster import random_walk

row = torch.tensor([0, 1, 1, 1, 2, 2, 3, 3, 4, 4])
col = torch.tensor([1, 0, 2, 3, 1, 4, 1, 4, 2, 3])
start = torch.tensor([0, 1, 2, 3, 4])

walk = random_walk(row, col, start, walk_length=3)
```

```
print(walk)
Maurits's avatar
Maurits committed
256
tensor([[0, 1, 2, 4],
rusty1s's avatar
rusty1s committed
257
        [1, 3, 4, 2],
Maurits's avatar
Maurits committed
258
259
260
        [2, 4, 2, 1],
        [3, 4, 2, 4],
        [4, 3, 1, 0]])
rusty1s's avatar
rusty1s committed
261
262
```

rusty1s's avatar
rusty1s committed
263
264
265
266
267
## Running tests

```
python setup.py test
```
rusty1s's avatar
rusty1s committed
268
269
270
271
272
273
274
275
276
277
278
279
280

## C++ API

`torch-cluster` also offers a C++ API that contains C++ equivalent of python models.

```
mkdir build
cd build
# Add -DWITH_CUDA=on support for the CUDA if needed
cmake ..
make
make install
```