parallel.cc 21.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
/*!
 * \file op/parallel.cc
 * \brief Define Parallel for operator
 */

#include "parallel.h"

#include <tvm/tir/op.h>

#include "../layout/utils.h"
#include "../target/utils.h"
#include "../transform/loop_partition.h"
#include "../transform/loop_vectorize.h"

namespace tvm {
namespace tl {

using namespace tir;

namespace attr {
/*! \brief Mark that how the loop is vectorized. */
constexpr const char *coalesced_width = "coalesced_width";
23
} // namespace attr
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
// ProveFragmentContains checks whether the threads that access elements of a
// smaller fragment (small_frag) are a subset of the threads that access
// elements of a larger fragment (large_frag) for any given loop index. This
// function ensures that if the small fragment's layout corresponds to the loop
// itself, accessing the large fragment's elements is valid. Additionally, if
// small is updated to large, the originally valid access remains valid. The
// proof is performed by:
//
// 1. Defining a variable `rep_small` to represent the replicate index of the
//    small fragment that is being checked.
// 2. Using the `small_frag_indices` and `rep_small` to derive the thread
// accessing
//    the element in the small fragment.
// 3. Using `large_frag_indices` to derive the physical index of the large
// fragment
//    along with the thread information, and then feeding these into the inverse
//    of the large fragment to obtain the logical index and replicate index.
// 4. Verifying the mapping by checking whether the computed thread using the
// inverse
//    layout corresponds to the original thread calculated for the small
//    fragment. If they don't match, this indicates that the inverse layout's
//    domain does not include the thread and thus the access is invalid.
bool ProveFragmentContains(Fragment small_frag, Fragment large_frag,
                           Array<PrimExpr> small_frag_indices,
                           Array<PrimExpr> large_frag_indices,
                           arith::Analyzer &analyzer_) {
  Var rep_small("__checking_frag_contains_rep");
  analyzer_.Bind(rep_small,
                 Range(IntImm(small_frag->ReplicateExtent()->dtype, 0),
                       small_frag->ReplicateExtent()),
                 true); // Bind the replicate extent of small_frag.
  // Derive thread for small_frag.
  auto thread = small_frag->ForwardThread(small_frag_indices, rep_small);

  // Get physical index and thread for large_frag.
  auto large_frag_physical_and_thread = large_frag->Forward(large_frag_indices);
  // Add small_frag's thread to the large fragment's thread info.
  large_frag_physical_and_thread.push_back(thread);
  // Get the inverse of the large fragment.
  auto inv_large_frag = large_frag->Inverse();
  // Compute logical index and replicate index using inverse layout.
  auto inv_large_frag_logical_and_rep =
      inv_large_frag->Forward(large_frag_physical_and_thread);

  // Extract replicate index from the result.
  auto inv_large_frag_rep =
      inv_large_frag_logical_and_rep[inv_large_frag_logical_and_rep.size() - 1];

  // Calculate thread based on the logical index and replicate index.
  auto check_thread =
      large_frag->ForwardThread(large_frag_indices, inv_large_frag_rep);

  // Simplify the difference between the threads.
  auto diff = analyzer_.Simplify(thread - check_thread);
  // If the difference is zero, the threads match and the access is valid.
  return is_zero(diff);
}

83
class IfBufferRemapLoopGenerator : public StmtExprMutator {
84
public:
85
86
87
88
89
90
  static For run(Stmt stmt, Map<Buffer, Buffer> buffer_remap,
                 Map<Buffer, Layout> layout_map) {
    IfBufferRemapLoopGenerator generator(buffer_remap, layout_map);
    return Downcast<For>(generator(std::move(stmt)));
  }

91
92
93
private:
  IfBufferRemapLoopGenerator(Map<Buffer, Buffer> buffer_remap,
                             Map<Buffer, Layout> layout_map)
94
95
      : buffer_remap_(buffer_remap), layout_map_(layout_map) {}

96
  PrimExpr VisitExpr_(const BufferLoadNode *op) final {
97
98
99
100
101
102
103
104
105
106
107
    auto load = Downcast<BufferLoad>(StmtExprMutator::VisitExpr_(op));

    if (buffer_remap_.count(load->buffer)) {
      auto new_indices = layout_map_[load->buffer]->Forward(load->indices);
      auto new_buffer = buffer_remap_[load->buffer];

      return BufferLoad(new_buffer, new_indices);
    }
    return load;
  }

108
  Stmt VisitStmt_(const BufferStoreNode *op) final {
109
110
111
112
113
114
115
116
117
118
119
120
121
    auto store = Downcast<BufferStore>(StmtExprMutator::VisitStmt_(op));
    if (buffer_remap_.count(store->buffer)) {
      auto new_indices = layout_map_[store->buffer]->Forward(store->indices);
      auto new_buffer = buffer_remap_[store->buffer];
      return BufferStore(new_buffer, store->value, new_indices);
    }
    return store;
  }

  Map<Buffer, Buffer> buffer_remap_;
  Map<Buffer, Layout> layout_map_;
};

122
123
124
125
126
127
128
129
/**
 * @brief Handle a parallel For node during traversal, collecting loop metadata.
 *
 * Visits a parallel loop, asserts the loop is parallel, records a data-parallel
 * IterVar for the loop, binds the loop variable range into the analyzer scope,
 * and extracts any reducer information from the loop's annotations into the
 * visitor's reducer_info_map_. Continues traversal into the loop body.
 */
130
void ParallelLoopNestVisitor::VisitStmt_(const ForNode *op) {
131
132
133
134
135
136
137
  if (op->kind == ForKind::kParallel)
    p->loop_vars_.push_back(IterVar(Range(op->min, op->extent), op->loop_var,
                                    IterVarType::kDataPar));
  else
    p->inner_vars_.Set(op->loop_var,
                       IterVar(Range(op->min, op->extent), op->loop_var,
                               IterVarType::kOrdered));
138
  p->analyzer_.Bind(op->loop_var, Range::FromMinExtent(op->min, op->extent));
139
140
141
142
143
144
  auto reducer_info_map =
      op->annotations.Get(attr::kReducerInfo)->as<Map<Var, ReducerInfo>>();
  if (reducer_info_map) {
    for (auto &&[buffer, info] : reducer_info_map.value())
      p->reducer_info_map_.Set(buffer, info);
  }
145
146
147
  StmtExprVisitor::VisitStmt_(op);
}

148
void ParallelLoopNestVisitor::VisitStmt_(const BufferStoreNode *op) {
149
150
151
  if (op->buffer.scope() == "local.fragment") {
    if (p->indice_map_.find(op->buffer) != p->indice_map_.end()) {
      ICHECK(StructuralEqual()(p->indice_map_.at(op->buffer), op->indices))
152
153
          << op->buffer << ": " << op->indices << " and "
          << p->indice_map_.at(op->buffer);
154
155
156
157
158
159
160
161
    } else {
      p->indice_map_.Set(op->buffer, op->indices);
    }
    p->buffer_is_write_.insert(op->buffer);
  }
  StmtExprVisitor::VisitStmt_(op);
}

162
void ParallelLoopNestVisitor::VisitExpr_(const BufferLoadNode *op) {
163
164
165
  if (op->buffer.scope() == "local.fragment") {
    if (p->indice_map_.find(op->buffer) != p->indice_map_.end()) {
      ICHECK(StructuralEqual()(p->indice_map_.at(op->buffer), op->indices))
166
167
          << op->buffer << ": " << op->indices << " and "
          << p->indice_map_.at(op->buffer);
168
169
170
171
172
173
174
    } else {
      p->indice_map_.Set(op->buffer, op->indices);
    }
  }
  StmtExprVisitor::VisitExpr_(op);
}

175
176
177
178
179
180
181
182
183
184
185
186
187
ParallelOpNode::ParallelOpNode(For root) : root_(root), V(this) {
  V.VisitStmt(root);
}

TileOperator ParallelOpNode::Clone() const {
  auto op = make_object<ParallelOpNode>(*this);
  return ParallelOp(op);
}

Stmt ParallelOpNode::Lower(const LowerArgs &T,
                           arith::Analyzer *analyzer) const {
  return root_;
}
188

189
bool ParallelOpNode::IsCommonAccessIndice(const Buffer &buffer) const {
190
  auto common_indice = loop_vars_.Map([](const auto &iv) { return iv->var; });
191
192
193
  return StructuralEqual()(indice_map_[buffer], common_indice);
}

194
195
/*! \brief Infer the layout for parallel operations based on different inference
 * levels
196
 *
197
198
199
200
201
 * The inference level controls how aggressively we try to infer and optimize
 * layouts:
 * - kStrict (2): Most conservative level. Only allows explicitly defined
 * layouts. Returns empty layout map if loop_layout_ is not already defined.
 *                Used when exact layout control is required.
202
 *
203
204
205
 * - kCommon (1): Intermediate level between strict and free.
 *                Allows common layout patterns while maintaining some
 * constraints.
206
 *
207
208
209
210
 * - kFree (0):   Most permissive level. Allows maximum optimization freedom.
 *                Will attempt layout inference even without source buffers.
 *                Can generate new layouts based on vectorization and thread
 * bounds. Used when maximum performance optimization is desired.
211
 */
212
213
LayoutMap ParallelOpNode::InferLayout(const LayoutInferArgs &T,
                                      InferLevel level) const {
214
215
  if (loop_layout_.defined())
    return {};
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
  if (level == InferLevel::kStrict) {
    LayoutMap results;
    // Deduce buffers that shoule be complicated replicated.
    // For example:
    // for i in T.Parllel(m):
    //   fragment[0] = x[i]
    // then fragment[0] must be replicated on all threads.
    for (const auto &[buffer, indices] : indice_map_) {
      if (T.layout_map.count(buffer)) {
        continue;
      }
      if (buffer.scope() != "local.fragment")
        continue;

      // Check if all indices are zero
      bool all_indices_zero = true;
      for (const auto &index : indices) {
        if (const auto *imm = index.as<IntImmNode>()) {
          if (imm->value != 0) {
            all_indices_zero = false;
            LOG(FATAL)
                << "Fragment buffer access with non-zero index [" << imm->value
                << "] is not supported. "
                << "Only fragment[0] access is allowed within T.Parallel loop.";
          }
        } else {
          // Non-constant index, not all zero
          all_indices_zero = false;
        }
      }

      // Only set layout if all indices are zero
      if (all_indices_zero) {
        Array<IterVar> forward_vars;
        for (const auto &s : buffer->shape) {
          forward_vars.push_back(
              IterVar(Range(0, s), Var(), IterVarType::kDataPar));
        }
        Array<PrimExpr> forward_index;
        for (const auto &iv : forward_vars) {
          forward_index.push_back(iv->var);
        }
        Var rep;
        auto rep_iter =
            IterVar({0, T.thread_bounds->extent}, rep, IterVarType::kDataPar);

        const PrimExpr &forward_thread = rep;
        results.Set(buffer, Fragment(forward_vars, forward_index,
                                     forward_thread, rep_iter));
      }
    }
    return results;
  }
  auto buffer_is_completed_replicated = [&](const Buffer &buffer) {
    if (buffer.scope() != "local.fragment")
      return false;
    auto frag = T.layout_map[buffer].as<Fragment>().value();
    // buffer indices should be IntImm
    for (const auto &index : indice_map_[buffer]) {
      if (!index.as<IntImmNode>()) {
        return false;
      } else if (index.as<IntImmNode>()->value != 0) {
        LOG(FATAL) << "buffer " << buffer << " is not completed replicated";
      }
    }
    return frag->IsCompletedReplicated();
  };
  // Collect fragment buffers with const index and all fragment_buffers
  std::vector<Buffer> const_index_fragment_buffer, fragment_buffers;
  for (const auto &[buffer, indices] : indice_map_) {
    if (buffer.scope() != "local.fragment")
      continue;
    fragment_buffers.push_back(buffer);

    bool is_const_index = true;
    for (const auto &index : indices) {
      if (!index.as<IntImmNode>()) {
        is_const_index = false;
        break;
      }
    }
    if (is_const_index) {
      const_index_fragment_buffer.push_back(buffer);
    }
  }

  // Determine if common layout propagation should be applied.
  // If there are fragment buffers with non-constant indices, we need to
  // propagate the common layout pattern to ensure consistency across all
  // fragments. Example cases:
  //   - Need propagation: frag_a[0] = T.min(frag_a[0], frag_b[i])
  //     (const index frag_a interacts with non-const index frag_b)
  //   - No propagation needed: shared_a[i] = frag_a[0]
  //     (const index frag_a with non-fragment buffer)
  bool allow_layout_propgate =
      fragment_buffers.size() > const_index_fragment_buffer.size();
312
313
314

  // Step 1: try to infer loop's partition from a source fragment
  Buffer source_buffer, read_source_buffer;
315
316
  Buffer replicated_write_buffer; // Backup: fully replicated write buffer

317
  for (const auto &[buffer, indices] : indice_map_) {
318
    if (T.layout_map.count(buffer)) {
319
320
321
322
323
      // skip reducers with rep=ALL
      if (auto info = reducer_info_map_.Get(buffer->data);
          info && info.value()->rep == ReducerRepType::ALL)
        continue;

324
      auto frag = T.layout_map[buffer].as<Fragment>().value();
325
326
      bool is_fully_replicated = buffer_is_completed_replicated(buffer);

327
      if (buffer_is_write_.count(buffer)) {
328
        source_buffer = buffer;
329
330
331
332
      } else {
        // Keep the buffer with largest number of indices
        // (which means the inference based on that buffer is more accurate)
        // as read_source_buffer to get more accurate layout
333
334
335
336
337
        // if the buffer is completed replicated, we don't need to infer the
        // layout from this buffer.
        if ((!read_source_buffer.defined() ||
             indice_map_[buffer].size() >
                 indice_map_[read_source_buffer].size())) {
338
339
          read_source_buffer = buffer;
        }
340
341
342
343
        // If the buffer is not replicated and shape is equal to the
        // source_buffer, use it as source_buffer because the layout inference
        // is more accurate
        if (is_one(frag->ReplicateExtent()) && !source_buffer.defined()) {
344
345
          source_buffer = buffer;
        }
346
      }
347
348
    }
  }
349
  auto compute_loop_layout_from_buffer = [&](const Buffer &buffer) {
350
    Fragment src_layout = T.layout_map[buffer].as<Fragment>().value();
351
352
    DLOG(INFO) << "[compute_loop_layout_from_buffer] infer from buffer `"
               << buffer << "` of layout " << src_layout->DebugOutput() << '\n';
353

354
    Fragment result;
355
    if (IsCommonAccessIndice(buffer)) {
356
      result = src_layout;
357
358
    } else {
      Var rep;
359
360
361
362
      auto rep_iter = IterVar({0, src_layout->ReplicateExtent()}, rep,
                              IterVarType::kDataPar);
      PrimExpr loop_var_to_thread =
          src_layout->ForwardThread(indice_map_[buffer], rep);
363
      loop_var_to_thread = analyzer_.Simplify(loop_var_to_thread);
364

365
366
      result = Fragment(loop_vars_, {}, loop_var_to_thread, rep_iter)
                   ->BindThreadRange(T.thread_bounds);
367
    }
368
369
370
    DLOG(INFO) << "[compute_loop_layout_from_buffer] ... and get "
               << result->DebugOutput() << '\n';
    return result;
371
  };
372
373
374
375
376
377
378
379

  // Try to infer loop layout from buffers in order of preference:
  // 1. Non-replicated write buffer (most reliable)
  // 2. Non-replicated read buffer
  // 3. Fully replicated write buffer (backup, may cause issues)
  // 4. Free inference mode (no source buffer)

  if (source_buffer.defined() && allow_layout_propgate) {
380
381
    loop_layout_ = compute_loop_layout_from_buffer(source_buffer);
  } else if (level == InferLevel::kFree) {
382
    if (read_source_buffer.defined() && allow_layout_propgate) {
383
      loop_layout_ = compute_loop_layout_from_buffer(read_source_buffer);
384
385
386
      // // Loop don't need to be replicated.
      // if (!is_one(loop_layout_->ReplicateExtent()))
      //   loop_layout_ = loop_layout_->DeReplicate();
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

      // For free layout inference
      // If replication exists and buffer has cross-thread shared memory access,
      // add predicate
      bool has_cross_thread_access = false;
      PostOrderVisit(root_, [&](const ObjectRef &obj) {
        if (const auto *store = obj.as<BufferStoreNode>()) {
          // check if scope is shared or global
          if (store->buffer.scope() == "shared" ||
              store->buffer.scope() == "shared.dyn" ||
              store->buffer.scope() == "global") {
            has_cross_thread_access = true;
          }
        } else if (const auto *load = obj.as<BufferLoadNode>()) {
          // check if scope is shared or global
          if (load->buffer.scope() == "shared" ||
              load->buffer.scope() == "shared.dyn" ||
              load->buffer.scope() == "global") {
            has_cross_thread_access = true;
          }
        }
      });

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
      // check if loop body contains a "pure" buffer store (i.e., direct
      // assignment, not compound update)
      bool has_pure_buffer_store = false;
      PostOrderVisit(root_, [&](const ObjectRef &obj) {
        if (const auto *store = obj.as<BufferStoreNode>()) {
          // Check if the value is a direct load from another buffer (i.e., b[i]
          // = a[i])
          if (const auto *load = store->value.as<BufferLoadNode>()) {
            has_pure_buffer_store = true;
          }
        }
      });

      if (!is_one(loop_layout_->ReplicateExtent()) && has_cross_thread_access &&
          !has_pure_buffer_store) {
425
426
427
428
        auto inv = loop_layout_->Inverse();
        Array<PrimExpr> fwd;
        for (size_t i = 0; i < loop_layout_->OutputDim(); i++)
          fwd.push_back(0);
429
        fwd.push_back(InputPlaceholder(0) - T.thread_bounds->min);
430
431
432
        auto rep = inv->Forward(fwd).back();
        AddPredicate(EQ(rep, 0));
      }
433
434
435
436
    }

    if (!loop_layout_.defined()) {
      // No source buffer available, use free mode inference
437
438
      // Vectorize Size must be aware of the buffer_remap
      // As the pass will do post processing to the layout
439
440
      auto maybe_remapped_root_ =
          IfBufferRemapLoopGenerator::run(root_, T.buffer_remap, T.layout_map);
441
442
      int vector_size = GetVectorizeSize(maybe_remapped_root_);

443
444
      DLOG(INFO) << "[PlanLoopPartition] vector_size = " << vector_size << '\n';

445
446
447
448
      PrimExpr loop_total_size = 1;
      for (Stmt l = root_; l.as<For>().has_value();
           l = l.as<For>().value()->body)
        loop_total_size = loop_total_size * l.as<For>().value()->extent;
449
450
      DLOG(INFO) << "[PlanLoopPartition] loop_total_size = " << loop_total_size
                 << '\n';
451
452
453
454
455
      while (!analyzer_.CanProve(
                 floormod(loop_total_size,
                          T.thread_bounds->extent * vector_size) == 0) &&
             vector_size > 1)
        vector_size /= 2;
456
457
      DLOG(INFO) << "[PlanLoopPartition] after adjust: vector_size = "
                 << vector_size << '\n';
458

459
      // Check if coalesced_width is defined
460
461
      if (auto coalesced_width =
              root_->annotations.Get(tl::attr::coalesced_width)) {
462
        if (const auto *imm = coalesced_width->as<IntImmNode>()) {
463
464
465
          int expected = imm->value;
          // Verify that vector_size is divisible by expected
          if (vector_size % expected != 0) {
466
467
            LOG(FATAL) << "Vector size " << vector_size
                       << " is not divisible by coalesced width " << expected;
468
469
470
471
472
473
          }
          vector_size = expected;
        } else {
          LOG(FATAL) << "coalesced_width should be an IntImmNode.";
        }
      }
474
475
476
      DLOG(INFO) << "[PlanLoopPartition] root_ = " << root_
                 << " ############# vector_size = " << vector_size
                 << ", thread_bounds = " << T.thread_bounds << '\n';
477
      loop_layout_ = PlanLoopPartition(root_, vector_size, T.thread_bounds);
478
479
      DLOG(INFO) << "[PlanLoopPartition] loop_layout_ = "
                 << loop_layout_->DebugOutput() << '\n';
480
481
482
483
    }
  } else {
    return {};
  }
484

485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
  PrimExpr loop_thread_extent = loop_layout_->ThreadExtent();

  auto block_size = T.thread_bounds->extent;
  if (loop_layout_.defined()) {
    if (loop_layout_->ThreadRange().defined()) {
      auto thread_range = loop_layout_->ThreadRange();
      block_size = thread_range->extent;
      AddPredicate(GE(InputPlaceholder(0), thread_range->min));
      AddPredicate(
          LT(InputPlaceholder(0), thread_range->min + thread_range->extent));
    }
  }

  if (!analyzer_.CanProveEqual(loop_thread_extent, block_size)) {
    AddPredicate(
        LT(InputPlaceholder(0), loop_thread_extent + T.thread_bounds->min));
  }

503
  // Step 2: Check that the loop's partition can correctly align with all source
504
505
  // fragment, and infer layout only when it's not yet layout-ed
  LayoutMap results;
506
  for (const auto &[buffer, _] : indice_map_) {
507
508
    if (T.layout_map.count(buffer)) {
      auto fragment = T.layout_map[buffer].as<Fragment>().value();
509
510
      auto vars =
          loop_vars_.Map([](const IterVar &iv) { return PrimExpr(iv->var); });
511
512
513
514
      if (!ProveFragmentContains(loop_layout_, fragment, vars,
                                 indice_map_[buffer], analyzer_)) {
        std::ostringstream oss;
        oss << "Layout infer conflict between " << buffer << " and "
515
516
517
            << source_buffer << " in T.Parallel loop:" << '\n'
            << "    loop " << loop_layout_->DebugOutput() << '\n'
            << "    fragment " << fragment->DebugOutput() << '\n';
518
        throw LayoutConflictException(oss.str());
519
      }
520
521
522
523
    } else {
      auto dst_layout =
          CompleteBufferFragment(buffer)->BindThreadRange(T.thread_bounds);
      results.Set(buffer, dst_layout);
524
    }
525
526
527
528
  }
  return results;
}

529
Optional<PrimExpr> ParallelOpNode::GetPredicate(Var thread_var) const {
530
531
532
  if (predicate_.defined()) {
    return Substitute(predicate_.value(), {{InputPlaceholder(0), thread_var}});
  } else {
533
    return std::nullopt;
534
535
536
  }
}

537
Fragment ParallelOpNode::CompleteBufferFragment(const Buffer &buffer) const {
538
  ICHECK(loop_layout_.defined());
539
  if (IsCommonAccessIndice(buffer)) {
540
    return loop_layout_;
541
  }
542
543
  PrimExpr rep_b = MakeFlattenedExpression(
      DivideUnusedIterators(indice_map_[buffer], loop_vars_, &analyzer_));
544
545
546
  auto bijective_indice = indice_map_[buffer];
  bijective_indice.push_back(rep_b);
  Layout ind_inv = Layout(loop_vars_, bijective_indice)->Inverse();
547
548
  PrimExpr indice_rep_extent =
      ind_inv->InputShape().back(); // this is the size of rep_b
549
550
551
552
553
554
555
556
  PrimExpr loop_rep_extent = loop_layout_->ReplicateExtent();
  PrimExpr dest_buffer_rep_extent = indice_rep_extent * loop_rep_extent;
  Array<PrimExpr> fwd;
  for (size_t i = 0; i < buffer->shape.size(); i++) {
    fwd.push_back(InputPlaceholder(i));
  }
  fwd.push_back(FloorMod(ReplicationPlaceholder(), indice_rep_extent));
  PrimExpr thd_b = loop_layout_->ForwardThread(
557
558
      ind_inv->Forward(fwd),
      FloorDiv(ReplicationPlaceholder(), indice_rep_extent));
559
560
  return Fragment(buffer->shape, {}, thd_b, dest_buffer_rep_extent,
                  std::nullopt)
561
562
563
      ->CondenseReplicateVar();
}

564
565
TVM_FFI_STATIC_INIT_BLOCK({ ParallelOpNode::RegisterReflection(); });

566
567
} // namespace tl
} // namespace tvm