parallel.cc 9.55 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership. The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

/*!
 * \file op/parallel.cc
 * \brief Define Parallel for operator
 */

#include "parallel.h"

#include <tvm/tir/op.h>

#include "../layout/utils.h"
#include "../target/utils.h"
#include "../transform/loop_partition.h"
#include "../transform/loop_vectorize.h"

namespace tvm {
namespace tl {

using namespace tir;

namespace attr {
/*! \brief Mark that how the loop is vectorized. */
constexpr const char *coalesced_width = "coalesced_width";
}

class IfBufferRemapLoopGenerator : public StmtExprMutator {
 public:
  static For run(Stmt stmt, Map<Buffer, Buffer> buffer_remap,
                 Map<Buffer, Layout> layout_map) {
    IfBufferRemapLoopGenerator generator(buffer_remap, layout_map);
    return Downcast<For>(generator(std::move(stmt)));
  }

 private:
  IfBufferRemapLoopGenerator(Map<Buffer, Buffer> buffer_remap, Map<Buffer, Layout> layout_map)
      : buffer_remap_(buffer_remap), layout_map_(layout_map) {}

  PrimExpr VisitExpr_(const BufferLoadNode* op) final {
    auto load = Downcast<BufferLoad>(StmtExprMutator::VisitExpr_(op));

    if (buffer_remap_.count(load->buffer)) {
      auto new_indices = layout_map_[load->buffer]->Forward(load->indices);
      auto new_buffer = buffer_remap_[load->buffer];

      return BufferLoad(new_buffer, new_indices);
    }
    return load;
  }

  Stmt VisitStmt_(const BufferStoreNode* op) final {
    auto store = Downcast<BufferStore>(StmtExprMutator::VisitStmt_(op));
    if (buffer_remap_.count(store->buffer)) {
      auto new_indices = layout_map_[store->buffer]->Forward(store->indices);
      auto new_buffer = buffer_remap_[store->buffer];
      return BufferStore(new_buffer, store->value, new_indices);
    }
    return store;
  }

  Map<Buffer, Buffer> buffer_remap_;
  Map<Buffer, Layout> layout_map_;
};

void ParallelLoopNestVisitor::VisitStmt_(const ForNode* op) {
  ICHECK(op->kind == ForKind::kParallel);
  p->loop_vars_.push_back(IterVar(Range(op->min, op->extent), op->loop_var, IterVarType::kDataPar));
  p->analyzer_.Bind(op->loop_var, Range::FromMinExtent(op->min, op->extent));
  StmtExprVisitor::VisitStmt_(op);
}

void ParallelLoopNestVisitor::VisitStmt_(const BufferStoreNode* op) {
  if (op->buffer.scope() == "local.fragment") {
    if (p->indice_map_.find(op->buffer) != p->indice_map_.end()) {
      ICHECK(StructuralEqual()(p->indice_map_.at(op->buffer), op->indices))
          << op->buffer << ": " << op->indices << " and " << p->indice_map_.at(op->buffer);
    } else {
      p->indice_map_.Set(op->buffer, op->indices);
    }
    p->buffer_is_write_.insert(op->buffer);
  }
  StmtExprVisitor::VisitStmt_(op);
}

void ParallelLoopNestVisitor::VisitExpr_(const BufferLoadNode* op) {
  if (op->buffer.scope() == "local.fragment") {
    if (p->indice_map_.find(op->buffer) != p->indice_map_.end()) {
      ICHECK(StructuralEqual()(p->indice_map_.at(op->buffer), op->indices))
          << op->buffer << ": " << op->indices << " and " << p->indice_map_.at(op->buffer);
    } else {
      p->indice_map_.Set(op->buffer, op->indices);
    }
  }
  StmtExprVisitor::VisitExpr_(op);
}

ParallelOp::ParallelOp(For root) : root_(root), V(this) { V.VisitStmt(root); }

bool ParallelOp::IsCommonAccessIndice(const Buffer& buffer) const {
  auto common_indice = loop_vars_.Map([](const auto& iv) { return iv->var; });
  return StructuralEqual()(indice_map_[buffer], common_indice);
}

LayoutMap ParallelOp::InferLayout(const LayoutInferArgs& T, InferLevel level) {
  if (loop_layout_.defined()) return {};
  if (level == InferLevel::kStrict) return {};

  // Step 1: try to infer loop's partition from a source fragment
  Buffer source_buffer, read_source_buffer;
  for (const auto& [buffer, _] : indice_map_) {
    if (T.layout_map.count(buffer)) {
      auto frag = T.layout_map[buffer].as<Fragment>().value();
      if (buffer_is_write_.count(buffer))
        source_buffer = buffer;
      else
        read_source_buffer = buffer;
    }
  }
  auto compute_loop_layout_from_buffer = [&](const Buffer& buffer) {
    Fragment src_layout = T.layout_map[buffer].as<Fragment>().value();
    if (IsCommonAccessIndice(buffer)) {
      return src_layout;
    } else {
      Var rep;
      auto rep_iter = IterVar({0, src_layout->ReplicateExtent()}, rep, IterVarType::kDataPar);
      PrimExpr loop_var_to_thread = src_layout->ForwardThread(indice_map_[buffer], rep);
      return Fragment(loop_vars_, {}, loop_var_to_thread, rep_iter);
    }
  };
  if (source_buffer.defined()) {
    loop_layout_ = compute_loop_layout_from_buffer(source_buffer);
  } else if (level == InferLevel::kFree) {
    if (read_source_buffer.defined()) {
      loop_layout_ = compute_loop_layout_from_buffer(read_source_buffer);
      // Loop don't need to be replicated.
      if (!is_one(loop_layout_->ReplicateExtent())) loop_layout_ = loop_layout_->DeReplicate();
      // if still has replication, add a condition
      if (!is_one(loop_layout_->ReplicateExtent())) {
        auto inv = loop_layout_->Inverse();
        Array<PrimExpr> fwd;
        for (size_t i = 0; i < loop_layout_->OutputDim(); i++) fwd.push_back(0);
        fwd.push_back(InputPlaceholder(0));
        auto rep = inv->Forward(fwd).back();
        AddPredicate(EQ(rep, 0));
      }
    } else {
      // Vectorize Size must be aware of the buffer_remap
      // As the pass will do post processing to the layout
      auto maybe_remapped_root_ = IfBufferRemapLoopGenerator::run(root_, T.buffer_remap, T.layout_map);
      int vector_size = GetVectorizeSize(maybe_remapped_root_);

      // Check if coalesced_width is defined
      if (auto coalesced_width = root_->annotations.Get(tl::attr::coalesced_width)) {
        if (const auto* imm = coalesced_width.as<IntImmNode>()) {
          int expected = imm->value;
          // Verify that vector_size is divisible by expected
          if (vector_size % expected != 0) {
            LOG(FATAL) << "Vector size " << vector_size << " is not divisible by coalesced width "
                       << expected;
          }
          vector_size = expected;
        } else {
          LOG(FATAL) << "coalesced_width should be an IntImmNode.";
        }
      }

      loop_layout_ = PlanLoopPartition(root_, T.block_size, vector_size);
    }
    PrimExpr loop_thread_extent = loop_layout_->ThreadExtent();
    if (!analyzer_.CanProveEqual(loop_thread_extent, static_cast<int>(T.block_size)))
      AddPredicate(LT(InputPlaceholder(0), loop_thread_extent));
  } else {
    return {};
  }
  // Step 2: Check that the loop's partition can correctly align with all source fragment
  for (const auto& [buffer, _] : indice_map_) {
    if (T.layout_map.count(buffer)) {
      auto fragment = T.layout_map[buffer].as<Fragment>().value();
      // TODO: Add thread checks for replicated cases
      // need to wildcard match the rhs with lhs
      if (!is_one(loop_layout_->ReplicateExtent()) || !is_one(fragment->ReplicateExtent()))
        continue;
      auto vars = loop_vars_.Map([](const IterVar& iv) { return PrimExpr(iv->var); });
      auto lhs = loop_layout_->ForwardThread(vars, NullOpt);
      auto rhs = fragment->ForwardThread(indice_map_[buffer], NullOpt);
      auto diff = analyzer_.Simplify(lhs - rhs);
      ICHECK(is_zero(diff)) << "Layout infer conflict for " << buffer << " " << source_buffer
                            << "\nLHS = " << lhs << "\nRHS = " << rhs;
    }
  }
  // Step 3: Infer other fragment's layout from the loop's partition
  LayoutMap results;
  for (const auto& [buffer, _] : indice_map_) {
    if (!T.layout_map.count(buffer)) results.Set(buffer, CompleteBufferFragment(buffer));
  }
  return results;
}

Optional<PrimExpr> ParallelOp::GetPredicate(Var thread_var) const {
  if (predicate_.defined()) {
    return Substitute(predicate_.value(), {{InputPlaceholder(0), thread_var}});
  } else {
    return NullOpt;
  }
}

Fragment ParallelOp::CompleteBufferFragment(const Buffer& buffer) {
  ICHECK(loop_layout_.defined());
  if (IsCommonAccessIndice(buffer)) return loop_layout_;

  PrimExpr rep_b =
      MakeFlattenedExpression(DivideUnusedIterators(indice_map_[buffer], loop_vars_, &analyzer_));

  auto bijective_indice = indice_map_[buffer];
  bijective_indice.push_back(rep_b);
  Layout ind_inv = Layout(loop_vars_, bijective_indice)->Inverse();

  PrimExpr indice_rep_extent = ind_inv->InputShape().back();  // this is the size of rep_b
  PrimExpr loop_rep_extent = loop_layout_->ReplicateExtent();
  PrimExpr dest_buffer_rep_extent = indice_rep_extent * loop_rep_extent;

  Array<PrimExpr> fwd;
  for (size_t i = 0; i < buffer->shape.size(); i++) {
    fwd.push_back(InputPlaceholder(i));
  }
  fwd.push_back(FloorMod(ReplicationPlaceholder(), indice_rep_extent));
  PrimExpr thd_b = loop_layout_->ForwardThread(
      ind_inv->Forward(fwd), FloorDiv(ReplicationPlaceholder(), indice_rep_extent));

  return Fragment(buffer->shape, {}, thd_b, dest_buffer_rep_extent, NullOpt)
      ->CondenseReplicateVar();
}

}  // namespace tl
}  // namespace tvm