parallel.cc 15.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
/*!
 * \file op/parallel.cc
 * \brief Define Parallel for operator
 */

#include "parallel.h"

#include <tvm/tir/op.h>

#include "../layout/utils.h"
#include "../target/utils.h"
#include "../transform/loop_partition.h"
#include "../transform/loop_vectorize.h"

namespace tvm {
namespace tl {

using namespace tir;

namespace attr {
/*! \brief Mark that how the loop is vectorized. */
constexpr const char *coalesced_width = "coalesced_width";
23
} // namespace attr
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
// ProveFragmentContains checks whether the threads that access elements of a
// smaller fragment (small_frag) are a subset of the threads that access
// elements of a larger fragment (large_frag) for any given loop index. This
// function ensures that if the small fragment's layout corresponds to the loop
// itself, accessing the large fragment's elements is valid. Additionally, if
// small is updated to large, the originally valid access remains valid. The
// proof is performed by:
//
// 1. Defining a variable `rep_small` to represent the replicate index of the
//    small fragment that is being checked.
// 2. Using the `small_frag_indices` and `rep_small` to derive the thread
// accessing
//    the element in the small fragment.
// 3. Using `large_frag_indices` to derive the physical index of the large
// fragment
//    along with the thread information, and then feeding these into the inverse
//    of the large fragment to obtain the logical index and replicate index.
// 4. Verifying the mapping by checking whether the computed thread using the
// inverse
//    layout corresponds to the original thread calculated for the small
//    fragment. If they don't match, this indicates that the inverse layout's
//    domain does not include the thread and thus the access is invalid.
bool ProveFragmentContains(Fragment small_frag, Fragment large_frag,
                           Array<PrimExpr> small_frag_indices,
                           Array<PrimExpr> large_frag_indices,
                           arith::Analyzer &analyzer_) {
  Var rep_small("__checking_frag_contains_rep");
  analyzer_.Bind(rep_small,
                 Range(IntImm(small_frag->ReplicateExtent()->dtype, 0),
                       small_frag->ReplicateExtent()),
                 true); // Bind the replicate extent of small_frag.
  // Derive thread for small_frag.
  auto thread = small_frag->ForwardThread(small_frag_indices, rep_small);

  // Get physical index and thread for large_frag.
  auto large_frag_physical_and_thread = large_frag->Forward(large_frag_indices);
  // Add small_frag's thread to the large fragment's thread info.
  large_frag_physical_and_thread.push_back(thread);
  // Get the inverse of the large fragment.
  auto inv_large_frag = large_frag->Inverse();
  // Compute logical index and replicate index using inverse layout.
  auto inv_large_frag_logical_and_rep =
      inv_large_frag->Forward(large_frag_physical_and_thread);

  // Extract replicate index from the result.
  auto inv_large_frag_rep =
      inv_large_frag_logical_and_rep[inv_large_frag_logical_and_rep.size() - 1];

  // Calculate thread based on the logical index and replicate index.
  auto check_thread =
      large_frag->ForwardThread(large_frag_indices, inv_large_frag_rep);

  // Simplify the difference between the threads.
  auto diff = analyzer_.Simplify(thread - check_thread);
  // If the difference is zero, the threads match and the access is valid.
  return is_zero(diff);
}

83
class IfBufferRemapLoopGenerator : public StmtExprMutator {
84
public:
85
86
87
88
89
90
  static For run(Stmt stmt, Map<Buffer, Buffer> buffer_remap,
                 Map<Buffer, Layout> layout_map) {
    IfBufferRemapLoopGenerator generator(buffer_remap, layout_map);
    return Downcast<For>(generator(std::move(stmt)));
  }

91
92
93
private:
  IfBufferRemapLoopGenerator(Map<Buffer, Buffer> buffer_remap,
                             Map<Buffer, Layout> layout_map)
94
95
      : buffer_remap_(buffer_remap), layout_map_(layout_map) {}

96
  PrimExpr VisitExpr_(const BufferLoadNode *op) final {
97
98
99
100
101
102
103
104
105
106
107
    auto load = Downcast<BufferLoad>(StmtExprMutator::VisitExpr_(op));

    if (buffer_remap_.count(load->buffer)) {
      auto new_indices = layout_map_[load->buffer]->Forward(load->indices);
      auto new_buffer = buffer_remap_[load->buffer];

      return BufferLoad(new_buffer, new_indices);
    }
    return load;
  }

108
  Stmt VisitStmt_(const BufferStoreNode *op) final {
109
110
111
112
113
114
115
116
117
118
119
120
121
    auto store = Downcast<BufferStore>(StmtExprMutator::VisitStmt_(op));
    if (buffer_remap_.count(store->buffer)) {
      auto new_indices = layout_map_[store->buffer]->Forward(store->indices);
      auto new_buffer = buffer_remap_[store->buffer];
      return BufferStore(new_buffer, store->value, new_indices);
    }
    return store;
  }

  Map<Buffer, Buffer> buffer_remap_;
  Map<Buffer, Layout> layout_map_;
};

122
void ParallelLoopNestVisitor::VisitStmt_(const ForNode *op) {
123
  ICHECK(op->kind == ForKind::kParallel);
124
125
  p->loop_vars_.push_back(
      IterVar(Range(op->min, op->extent), op->loop_var, IterVarType::kDataPar));
126
127
128
129
  p->analyzer_.Bind(op->loop_var, Range::FromMinExtent(op->min, op->extent));
  StmtExprVisitor::VisitStmt_(op);
}

130
void ParallelLoopNestVisitor::VisitStmt_(const BufferStoreNode *op) {
131
132
133
  if (op->buffer.scope() == "local.fragment") {
    if (p->indice_map_.find(op->buffer) != p->indice_map_.end()) {
      ICHECK(StructuralEqual()(p->indice_map_.at(op->buffer), op->indices))
134
135
          << op->buffer << ": " << op->indices << " and "
          << p->indice_map_.at(op->buffer);
136
137
138
139
140
141
142
143
    } else {
      p->indice_map_.Set(op->buffer, op->indices);
    }
    p->buffer_is_write_.insert(op->buffer);
  }
  StmtExprVisitor::VisitStmt_(op);
}

144
void ParallelLoopNestVisitor::VisitExpr_(const BufferLoadNode *op) {
145
146
147
  if (op->buffer.scope() == "local.fragment") {
    if (p->indice_map_.find(op->buffer) != p->indice_map_.end()) {
      ICHECK(StructuralEqual()(p->indice_map_.at(op->buffer), op->indices))
148
149
          << op->buffer << ": " << op->indices << " and "
          << p->indice_map_.at(op->buffer);
150
151
152
153
154
155
156
    } else {
      p->indice_map_.Set(op->buffer, op->indices);
    }
  }
  StmtExprVisitor::VisitExpr_(op);
}

157
158
159
160
161
162
163
164
165
166
167
168
169
ParallelOpNode::ParallelOpNode(For root) : root_(root), V(this) {
  V.VisitStmt(root);
}

TileOperator ParallelOpNode::Clone() const {
  auto op = make_object<ParallelOpNode>(*this);
  return ParallelOp(op);
}

Stmt ParallelOpNode::Lower(const LowerArgs &T,
                           arith::Analyzer *analyzer) const {
  return root_;
}
170

171
bool ParallelOpNode::IsCommonAccessIndice(const Buffer &buffer) const {
172
  auto common_indice = loop_vars_.Map([](const auto &iv) { return iv->var; });
173
174
175
  return StructuralEqual()(indice_map_[buffer], common_indice);
}

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
/*! \brief Infer the layout for parallel operations based on different inference
 * levels
 *
 * The inference level controls how aggressively we try to infer and optimize
 * layouts:
 * - kStrict (2): Most conservative level. Only allows explicitly defined
 * layouts. Returns empty layout map if loop_layout_ is not already defined.
 *                Used when exact layout control is required.
 *
 * - kCommon (1): Intermediate level between strict and free.
 *                Allows common layout patterns while maintaining some
 * constraints.
 *
 * - kFree (0):   Most permissive level. Allows maximum optimization freedom.
 *                Will attempt layout inference even without source buffers.
 *                Can generate new layouts based on vectorization and thread
 * bounds. Used when maximum performance optimization is desired.
 */
194
195
LayoutMap ParallelOpNode::InferLayout(const LayoutInferArgs &T,
                                      InferLevel level) const {
196
197
198
199
  if (loop_layout_.defined())
    return {};
  if (level == InferLevel::kStrict)
    return {};
200
201
202

  // Step 1: try to infer loop's partition from a source fragment
  Buffer source_buffer, read_source_buffer;
203
  for (const auto &[buffer, indices] : indice_map_) {
204
205
    if (T.layout_map.count(buffer)) {
      auto frag = T.layout_map[buffer].as<Fragment>().value();
206
      if (buffer_is_write_.count(buffer)) {
207
        source_buffer = buffer;
208
209
210
211
212
213
214
215
216
      } else {
        // Keep the buffer with largest number of indices
        // (which means the inference based on that buffer is more accurate)
        // as read_source_buffer to get more accurate layout
        if (!read_source_buffer.defined() ||
            indice_map_[buffer].size() >
                indice_map_[read_source_buffer].size()) {
          read_source_buffer = buffer;
        }
217
218
219
220
        // If the buffer is not replicated and shape is equal to the
        // source_buffer, use it as source_buffer because the layout inference
        // is more accurate
        if (is_one(frag->ReplicateExtent()) && !source_buffer.defined()) {
221
222
          source_buffer = buffer;
        }
223
      }
224
225
    }
  }
226
  auto compute_loop_layout_from_buffer = [&](const Buffer &buffer) {
227
228
229
230
231
    Fragment src_layout = T.layout_map[buffer].as<Fragment>().value();
    if (IsCommonAccessIndice(buffer)) {
      return src_layout;
    } else {
      Var rep;
232
233
234
235
      auto rep_iter = IterVar({0, src_layout->ReplicateExtent()}, rep,
                              IterVarType::kDataPar);
      PrimExpr loop_var_to_thread =
          src_layout->ForwardThread(indice_map_[buffer], rep);
236
      return Fragment(loop_vars_, {}, loop_var_to_thread, rep_iter)
237
          ->BindThreadRange(T.thread_bounds);
238
239
240
241
242
243
244
    }
  };
  if (source_buffer.defined()) {
    loop_layout_ = compute_loop_layout_from_buffer(source_buffer);
  } else if (level == InferLevel::kFree) {
    if (read_source_buffer.defined()) {
      loop_layout_ = compute_loop_layout_from_buffer(read_source_buffer);
245
246
247
      // // Loop don't need to be replicated.
      // if (!is_one(loop_layout_->ReplicateExtent()))
      //   loop_layout_ = loop_layout_->DeReplicate();
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

      // For free layout inference
      // If replication exists and buffer has cross-thread shared memory access,
      // add predicate
      bool has_cross_thread_access = false;
      PostOrderVisit(root_, [&](const ObjectRef &obj) {
        if (const auto *store = obj.as<BufferStoreNode>()) {
          // check if scope is shared or global
          if (store->buffer.scope() == "shared" ||
              store->buffer.scope() == "shared.dyn" ||
              store->buffer.scope() == "global") {
            has_cross_thread_access = true;
          }
        } else if (const auto *load = obj.as<BufferLoadNode>()) {
          // check if scope is shared or global
          if (load->buffer.scope() == "shared" ||
              load->buffer.scope() == "shared.dyn" ||
              load->buffer.scope() == "global") {
            has_cross_thread_access = true;
          }
        }
      });

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
      // check if loop body contains a "pure" buffer store (i.e., direct
      // assignment, not compound update)
      bool has_pure_buffer_store = false;
      PostOrderVisit(root_, [&](const ObjectRef &obj) {
        if (const auto *store = obj.as<BufferStoreNode>()) {
          // Check if the value is a direct load from another buffer (i.e., b[i]
          // = a[i])
          if (const auto *load = store->value.as<BufferLoadNode>()) {
            has_pure_buffer_store = true;
          }
        }
      });

      if (!is_one(loop_layout_->ReplicateExtent()) && has_cross_thread_access &&
          !has_pure_buffer_store) {
286
287
288
289
        auto inv = loop_layout_->Inverse();
        Array<PrimExpr> fwd;
        for (size_t i = 0; i < loop_layout_->OutputDim(); i++)
          fwd.push_back(0);
290
        fwd.push_back(InputPlaceholder(0) - T.thread_bounds->min);
291
292
293
        auto rep = inv->Forward(fwd).back();
        AddPredicate(EQ(rep, 0));
      }
294
295
296
    } else {
      // Vectorize Size must be aware of the buffer_remap
      // As the pass will do post processing to the layout
297
298
      auto maybe_remapped_root_ =
          IfBufferRemapLoopGenerator::run(root_, T.buffer_remap, T.layout_map);
299
300
301
      int vector_size = GetVectorizeSize(maybe_remapped_root_);

      // Check if coalesced_width is defined
302
303
      if (auto coalesced_width =
              root_->annotations.Get(tl::attr::coalesced_width)) {
304
        if (const auto *imm = coalesced_width->as<IntImmNode>()) {
305
306
307
          int expected = imm->value;
          // Verify that vector_size is divisible by expected
          if (vector_size % expected != 0) {
308
309
            LOG(FATAL) << "Vector size " << vector_size
                       << " is not divisible by coalesced width " << expected;
310
311
312
313
314
315
          }
          vector_size = expected;
        } else {
          LOG(FATAL) << "coalesced_width should be an IntImmNode.";
        }
      }
316
      loop_layout_ = PlanLoopPartition(root_, vector_size, T.thread_bounds);
317
318
319
320
    }
  } else {
    return {};
  }
321

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
  PrimExpr loop_thread_extent = loop_layout_->ThreadExtent();

  auto block_size = T.thread_bounds->extent;
  if (loop_layout_.defined()) {
    if (loop_layout_->ThreadRange().defined()) {
      auto thread_range = loop_layout_->ThreadRange();
      block_size = thread_range->extent;
      AddPredicate(GE(InputPlaceholder(0), thread_range->min));
      AddPredicate(
          LT(InputPlaceholder(0), thread_range->min + thread_range->extent));
    }
  }

  if (!analyzer_.CanProveEqual(loop_thread_extent, block_size)) {
    AddPredicate(
        LT(InputPlaceholder(0), loop_thread_extent + T.thread_bounds->min));
  }

340
  // Step 2: Check that the loop's partition can correctly align with all source
341
342
  // fragment, and infer layout only when it's not yet layout-ed
  LayoutMap results;
343
  for (const auto &[buffer, _] : indice_map_) {
344
345
346
347
    if (T.layout_map.count(buffer)) {
      auto fragment = T.layout_map[buffer].as<Fragment>().value();
      // TODO: Add thread checks for replicated cases
      // need to wildcard match the rhs with lhs
348
349
      if (!is_one(loop_layout_->ReplicateExtent()) ||
          !is_one(fragment->ReplicateExtent()))
350
        continue;
351
352
      auto vars =
          loop_vars_.Map([](const IterVar &iv) { return PrimExpr(iv->var); });
353
354
355
356
357
358
359
360
      if (!ProveFragmentContains(loop_layout_, fragment, vars,
                                 indice_map_[buffer], analyzer_)) {
        std::ostringstream oss;
        oss << "Layout infer conflict between " << buffer << " and "
            << source_buffer << " in T.Parallel loop:" << std::endl
            << "    loop " << loop_layout_->DebugOutput() << std::endl
            << "    fragment " << fragment->DebugOutput() << std::endl;
        throw LayoutConflictException(oss.str());
361
      }
362
363
364
365
    } else {
      auto dst_layout =
          CompleteBufferFragment(buffer)->BindThreadRange(T.thread_bounds);
      results.Set(buffer, dst_layout);
366
    }
367
368
369
370
  }
  return results;
}

371
Optional<PrimExpr> ParallelOpNode::GetPredicate(Var thread_var) const {
372
373
374
  if (predicate_.defined()) {
    return Substitute(predicate_.value(), {{InputPlaceholder(0), thread_var}});
  } else {
375
    return std::nullopt;
376
377
378
  }
}

379
Fragment ParallelOpNode::CompleteBufferFragment(const Buffer &buffer) const {
380
  ICHECK(loop_layout_.defined());
381
  if (IsCommonAccessIndice(buffer)) {
382
    return loop_layout_;
383
  }
384
385
  PrimExpr rep_b = MakeFlattenedExpression(
      DivideUnusedIterators(indice_map_[buffer], loop_vars_, &analyzer_));
386
387
388
  auto bijective_indice = indice_map_[buffer];
  bijective_indice.push_back(rep_b);
  Layout ind_inv = Layout(loop_vars_, bijective_indice)->Inverse();
389
390
  PrimExpr indice_rep_extent =
      ind_inv->InputShape().back(); // this is the size of rep_b
391
392
393
394
395
396
397
398
  PrimExpr loop_rep_extent = loop_layout_->ReplicateExtent();
  PrimExpr dest_buffer_rep_extent = indice_rep_extent * loop_rep_extent;
  Array<PrimExpr> fwd;
  for (size_t i = 0; i < buffer->shape.size(); i++) {
    fwd.push_back(InputPlaceholder(i));
  }
  fwd.push_back(FloorMod(ReplicationPlaceholder(), indice_rep_extent));
  PrimExpr thd_b = loop_layout_->ForwardThread(
399
400
      ind_inv->Forward(fwd),
      FloorDiv(ReplicationPlaceholder(), indice_rep_extent));
401
402
  return Fragment(buffer->shape, {}, thd_b, dest_buffer_rep_extent,
                  std::nullopt)
403
404
405
      ->CondenseReplicateVar();
}

406
407
} // namespace tl
} // namespace tvm