test_tilelang_test_amd.py 8.01 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
from tilelang import tvm as tvm
import tilelang as tl
import tilelang.language as T
import tilelang.testing


def matmul(
    M,
    N,
    K,
    block_M,
    block_N,
    block_K,
    trans_A,
    trans_B,
    in_dtype,
    out_dtype,
    accum_dtype,
    num_stages,
    threads,
    k_pack=1,
):
    A_shape = (K, M) if trans_A else (M, K)
    B_shape = (N, K) if trans_B else (K, N)
    A_shared_shape = (block_K, block_M) if trans_A else (block_M, block_K)
    B_shared_shape = (block_N, block_K) if trans_B else (block_K, block_N)
    vec_size = 4 * k_pack

    @T.prim_func
30
    def main(A: T.Tensor(A_shape, in_dtype), B: T.Tensor(B_shape, in_dtype), C: T.Tensor((M, N), out_dtype)):
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):
            A_shared = T.alloc_shared(A_shared_shape, in_dtype)
            B_shared = T.alloc_shared(B_shared_shape, in_dtype)
            C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
            T.clear(C_local)
            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                if trans_A:
                    T.copy(A[k * block_K, by * block_M], A_shared, coalesced_width=vec_size)
                else:
                    T.copy(A[by * block_M, k * block_K], A_shared, coalesced_width=vec_size)
                if trans_B:
                    T.copy(B[bx * block_N, k * block_K], B_shared, coalesced_width=vec_size)
                else:
                    T.copy(B[k * block_K, bx * block_N], B_shared, coalesced_width=vec_size)
                T.gemm(A_shared, B_shared, C_local, trans_A, trans_B, k_pack=k_pack)
            T.copy(C_local, C[by * block_M, bx * block_N])

    return main


def run_gemm(
    M,
    N,
    K,
    trans_A,
    trans_B,
    in_dtype,
    out_dtype,
    dtypeAccum,
    block_M,
    block_N,
    block_K,
63
    num_stages=0,
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    num_threads=128,
    k_pack=1,
):
    program = matmul(
        M,
        N,
        K,
        block_M,
        block_N,
        block_K,
        trans_A,
        trans_B,
        in_dtype,
        out_dtype,
        dtypeAccum,
        num_stages,
        num_threads,
        k_pack=k_pack,
    )
83
84
    kernel = tl.compile(program, out_idx=[2])
    profiler = kernel.get_profiler()
85
86
87
88
89
90
91
92

    def ref_program(A, B):
        import torch

        if trans_A:
            A = A.T
        if trans_B:
            B = B.T
93
        return (A @ B).to(torch.__getattribute__(out_dtype))
94

95
    profiler.assert_allclose(ref_program, atol=1e-2, rtol=1e-2)
96
97


LeiWang1999's avatar
LeiWang1999 committed
98
@tilelang.testing.requires_rocm
99
def test_gemm_f16f32f32_nt():
100
    run_gemm(1024, 1024, 1024, False, False, "float16", "float32", "float32", 128, 128, 32)
101
    run_gemm(1024, 1024, 1024, False, True, "float16", "float32", "float32", 128, 128, 32)
102
103
    run_gemm(1024, 1024, 1024, True, True, "float16", "float32", "float32", 128, 128, 32)
    run_gemm(1024, 1024, 1024, True, False, "float16", "float32", "float32", 128, 128, 32)
104
105
106
    run_gemm(1024, 1024, 1024, False, True, "float16", "float32", "float32", 128, 128, 32, k_pack=2)


107
108
109
110
111
112
@tilelang.testing.requires_rocm
def test_gemm_bf16f32f32_nt():
    run_gemm(1024, 1024, 1024, False, False, "bfloat16", "float32", "float32", 128, 128, 32)
    run_gemm(1024, 1024, 1024, False, True, "bfloat16", "float32", "float32", 128, 128, 32)
    run_gemm(1024, 1024, 1024, True, True, "bfloat16", "float32", "float32", 128, 128, 32)
    run_gemm(1024, 1024, 1024, True, False, "bfloat16", "float32", "float32", 128, 128, 32)
113
    run_gemm(1024, 1024, 1024, False, True, "bfloat16", "float32", "float32", 128, 128, 32, k_pack=2)
114
115
116
117
118
119
120
121


@tilelang.testing.requires_rocm
def test_gemm_bf16bf16f32():
    run_gemm(1024, 1024, 1024, False, False, "bfloat16", "bfloat16", "float32", 128, 128, 32)
    run_gemm(1024, 1024, 1024, False, True, "bfloat16", "bfloat16", "float32", 128, 128, 32)
    run_gemm(1024, 1024, 1024, True, True, "bfloat16", "bfloat16", "float32", 128, 128, 32)
    run_gemm(1024, 1024, 1024, True, False, "bfloat16", "bfloat16", "float32", 128, 128, 32)
122
    run_gemm(1024, 1024, 1024, False, True, "bfloat16", "bfloat16", "float32", 128, 128, 32, k_pack=2)
123
124


125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
def matmul_rs(
    M,
    N,
    K,
    block_M,
    block_N,
    block_K,
    trans_A,
    trans_B,
    in_dtype,
    out_dtype,
    accum_dtype,
    num_stages,
    threads,
    k_pack=1,
):
    A_shape = (K, M) if trans_A else (M, K)
    B_shape = (N, K) if trans_B else (K, N)
    A_shared_shape = (block_K, block_M) if trans_A else (block_M, block_K)
    B_shared_shape = (block_N, block_K) if trans_B else (block_K, block_N)
    vec_size = 4 * k_pack

    @T.prim_func
148
    def main(
149
150
151
        A: T.Tensor(A_shape, in_dtype),
        B: T.Tensor(B_shape, in_dtype),
        C: T.Tensor((M, N), out_dtype),
152
    ):
153
154
155
156
157
158
159
160
161
162
163
164
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):
            A_shared = T.alloc_shared(A_shared_shape, in_dtype)
            A_local = T.alloc_fragment(A_shared_shape, in_dtype)
            B_shared = T.alloc_shared(B_shared_shape, in_dtype)
            C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
            T.clear(C_local)
            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                if trans_A:
                    T.copy(A[k * block_K, by * block_M], A_shared, coalesced_width=vec_size)
                    T.copy(A_shared, A_local)
                else:
                    T.copy(A[by * block_M, k * block_K], A_shared, coalesced_width=vec_size)
165
                    T.copy(A_shared, A_local)
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
                if trans_B:
                    T.copy(B[bx * block_N, k * block_K], B_shared, coalesced_width=vec_size)
                else:
                    T.copy(B[k * block_K, bx * block_N], B_shared, coalesced_width=vec_size)
                T.gemm(A_local, B_shared, C_local, trans_A, trans_B, k_pack=k_pack)
            T.copy(C_local, C[by * block_M, bx * block_N])

    return main


def run_gemm_rs(
    M,
    N,
    K,
    trans_A,
    trans_B,
    in_dtype,
    out_dtype,
    dtypeAccum,
    block_M,
    block_N,
    block_K,
    num_stages=0,
    num_threads=128,
    k_pack=1,
):
192
    program = matmul_rs(
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
        M,
        N,
        K,
        block_M,
        block_N,
        block_K,
        trans_A,
        trans_B,
        in_dtype,
        out_dtype,
        dtypeAccum,
        num_stages,
        num_threads,
        k_pack=k_pack,
    )
    kernel = tl.compile(program, out_idx=[2])
    profiler = kernel.get_profiler()

    def ref_program(A, B):
        import torch

        if trans_A:
            A = A.T
        if trans_B:
            B = B.T
        return (A @ B).to(torch.__getattribute__(out_dtype))

    profiler.assert_allclose(ref_program, atol=1e-2, rtol=1e-2)


223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# @tilelang.testing.requires_rocm
# def test_gemm_rs_f16f32f32_nt():
#     run_gemm_rs(1024, 1024, 1024, False, False, "float16", "float32", "float32", 128, 128, 32)
#     run_gemm_rs(1024, 1024, 1024, False, True, "float16", "float32", "float32", 128, 128, 32)
#     run_gemm_rs(1024, 1024, 1024, True, True, "float16", "float32", "float32", 128, 128, 32)
#     run_gemm_rs(1024, 1024, 1024, True, False, "float16", "float32", "float32", 128, 128, 32)

# @tilelang.testing.requires_rocm
# def test_gemm_rs_bf16f32f32_nt():
#     run_gemm_rs(1024, 1024, 1024, False, False, "bfloat16", "float32", "float32", 128, 128, 32)
#     run_gemm_rs(1024, 1024, 1024, False, True, "bfloat16", "float32", "float32", 128, 128, 32)
#     run_gemm_rs(1024, 1024, 1024, True, True, "bfloat16", "float32", "float32", 128, 128, 32)
#     run_gemm_rs(1024, 1024, 1024, True, False, "bfloat16", "float32", "float32", 128, 128, 32)

# @tilelang.testing.requires_rocm
# def test_gemm_rs_bf16bf16f32_nt():
#     run_gemm_rs(1024, 1024, 1024, False, False, "bfloat16", "bfloat16", "float32", 128, 128, 32)
#     run_gemm_rs(1024, 1024, 1024, False, True, "bfloat16", "bfloat16", "float32", 128, 128, 32)
#     run_gemm_rs(1024, 1024, 1024, True, True, "bfloat16", "bfloat16", "float32", 128, 128, 32)
#     run_gemm_rs(1024, 1024, 1024, True, False, "bfloat16", "bfloat16", "float32", 128, 128, 32)
243

244
245
if __name__ == "__main__":
    tilelang.testing.main()