"...git@developer.sourcefind.cn:OpenDAS/mmdetection3d.git" did not exist on "7c27cd750aa2a689fdad67bf1047f231dfbfe02d"
Commit 9e5a757e authored by Lei Wang's avatar Lei Wang Committed by LeiWang1999
Browse files

[Enhancement] Add new matrix multiplication functions and tests for GEMM with...

[Enhancement] Add new matrix multiplication functions and tests for GEMM with transpose options (#331)

- Introduced `matmul_rs` function for flexible matrix multiplication with optional transposition.
- Added `run_gemm_rs` function to facilitate testing of the new matrix multiplication implementation.
- Expanded test coverage for GEMM with additional cases for transposition configurations.
- Corrected index usage in `gemm.h` to ensure proper matrix layout handling.

These changes enhance the GEMM functionality and improve testing capabilities for various matrix configurations.
parent 32060ecd
......@@ -134,7 +134,7 @@ public:
auto [row, col] = reverse_index_map_transposed(lane_id, local_id);
A_local[i * kPack * local_size_a + local_id] =
A_shared[make_swizzle_layout<last_dim_a, sizeof(A_type)>(
l + col, r + row)];
r + row, l + col)];
} else {
auto [row, col] = reverse_index_map(lane_id, local_id);
A_local[i * kPack * local_size_a + local_id] =
......
......@@ -100,8 +100,112 @@ def run_gemm(
def test_gemm_f16f32f32_nt():
run_gemm(1024, 1024, 1024, False, False, "float16", "float32", "float32", 128, 128, 32)
run_gemm(1024, 1024, 1024, False, True, "float16", "float32", "float32", 128, 128, 32)
run_gemm(1024, 1024, 1024, True, True, "float16", "float32", "float32", 128, 128, 32)
run_gemm(1024, 1024, 1024, True, False, "float16", "float32", "float32", 128, 128, 32)
run_gemm(1024, 1024, 1024, False, True, "float16", "float32", "float32", 128, 128, 32, k_pack=2)
def matmul_rs(
M,
N,
K,
block_M,
block_N,
block_K,
trans_A,
trans_B,
in_dtype,
out_dtype,
accum_dtype,
num_stages,
threads,
k_pack=1,
):
A_shape = (K, M) if trans_A else (M, K)
B_shape = (N, K) if trans_B else (K, N)
A_shared_shape = (block_K, block_M) if trans_A else (block_M, block_K)
B_shared_shape = (block_N, block_K) if trans_B else (block_K, block_N)
vec_size = 4 * k_pack
@T.prim_func
def main(A: T.Tensor(A_shape, in_dtype), B: T.Tensor(B_shape, in_dtype), C: T.Tensor(
(M, N), out_dtype)):
with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):
A_shared = T.alloc_shared(A_shared_shape, in_dtype)
A_local = T.alloc_fragment(A_shared_shape, in_dtype)
B_shared = T.alloc_shared(B_shared_shape, in_dtype)
C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
T.clear(C_local)
for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
if trans_A:
T.copy(A[k * block_K, by * block_M], A_shared, coalesced_width=vec_size)
T.copy(A_shared, A_local)
else:
T.copy(A[by * block_M, k * block_K], A_shared, coalesced_width=vec_size)
if trans_B:
T.copy(B[bx * block_N, k * block_K], B_shared, coalesced_width=vec_size)
else:
T.copy(B[k * block_K, bx * block_N], B_shared, coalesced_width=vec_size)
T.gemm(A_local, B_shared, C_local, trans_A, trans_B, k_pack=k_pack)
T.copy(C_local, C[by * block_M, bx * block_N])
return main
def run_gemm_rs(
M,
N,
K,
trans_A,
trans_B,
in_dtype,
out_dtype,
dtypeAccum,
block_M,
block_N,
block_K,
num_stages=0,
num_threads=128,
k_pack=1,
):
program = matmul(
M,
N,
K,
block_M,
block_N,
block_K,
trans_A,
trans_B,
in_dtype,
out_dtype,
dtypeAccum,
num_stages,
num_threads,
k_pack=k_pack,
)
kernel = tl.compile(program, out_idx=[2])
profiler = kernel.get_profiler()
def ref_program(A, B):
import torch
if trans_A:
A = A.T
if trans_B:
B = B.T
return (A @ B).to(torch.__getattribute__(out_dtype))
profiler.assert_allclose(ref_program, atol=1e-2, rtol=1e-2)
@tilelang.testing.requires_rocm
def test_gemm_rs_f16f32f32_nt():
run_gemm_rs(1024, 1024, 1024, False, False, "float16", "float32", "float32", 128, 128, 32)
run_gemm_rs(1024, 1024, 1024, False, True, "float16", "float32", "float32", 128, 128, 32)
run_gemm_rs(1024, 1024, 1024, True, True, "float16", "float32", "float32", 128, 128, 32)
run_gemm_rs(1024, 1024, 1024, True, False, "float16", "float32", "float32", 128, 128, 32)
if __name__ == "__main__":
tilelang.testing.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment