"src/include/blockwise_gemm.hpp" did not exist on "05d7a0875c8e4cd12aed8e63100591ed07328d6a"
test_tilelang_test_amd.py 6.07 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
from tilelang import tvm as tvm
import tilelang as tl
import tilelang.language as T
import tilelang.testing


def matmul(
    M,
    N,
    K,
    block_M,
    block_N,
    block_K,
    trans_A,
    trans_B,
    in_dtype,
    out_dtype,
    accum_dtype,
    num_stages,
    threads,
    k_pack=1,
):
    A_shape = (K, M) if trans_A else (M, K)
    B_shape = (N, K) if trans_B else (K, N)
    A_shared_shape = (block_K, block_M) if trans_A else (block_M, block_K)
    B_shared_shape = (block_N, block_K) if trans_B else (block_K, block_N)
    vec_size = 4 * k_pack

    @T.prim_func
30
    def main(A: T.Tensor(A_shape, in_dtype), B: T.Tensor(B_shape, in_dtype), C: T.Tensor(
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
        (M, N), out_dtype)):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):
            A_shared = T.alloc_shared(A_shared_shape, in_dtype)
            B_shared = T.alloc_shared(B_shared_shape, in_dtype)
            C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
            T.clear(C_local)
            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                if trans_A:
                    T.copy(A[k * block_K, by * block_M], A_shared, coalesced_width=vec_size)
                else:
                    T.copy(A[by * block_M, k * block_K], A_shared, coalesced_width=vec_size)
                if trans_B:
                    T.copy(B[bx * block_N, k * block_K], B_shared, coalesced_width=vec_size)
                else:
                    T.copy(B[k * block_K, bx * block_N], B_shared, coalesced_width=vec_size)
                T.gemm(A_shared, B_shared, C_local, trans_A, trans_B, k_pack=k_pack)
            T.copy(C_local, C[by * block_M, bx * block_N])

    return main


def run_gemm(
    M,
    N,
    K,
    trans_A,
    trans_B,
    in_dtype,
    out_dtype,
    dtypeAccum,
    block_M,
    block_N,
    block_K,
64
    num_stages=0,
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    num_threads=128,
    k_pack=1,
):
    program = matmul(
        M,
        N,
        K,
        block_M,
        block_N,
        block_K,
        trans_A,
        trans_B,
        in_dtype,
        out_dtype,
        dtypeAccum,
        num_stages,
        num_threads,
        k_pack=k_pack,
    )
84
85
    kernel = tl.compile(program, out_idx=[2])
    profiler = kernel.get_profiler()
86
87
88
89
90
91
92
93

    def ref_program(A, B):
        import torch

        if trans_A:
            A = A.T
        if trans_B:
            B = B.T
94
        return (A @ B).to(torch.__getattribute__(out_dtype))
95

96
    profiler.assert_allclose(ref_program, atol=1e-2, rtol=1e-2)
97
98


LeiWang1999's avatar
LeiWang1999 committed
99
@tilelang.testing.requires_rocm
100
def test_gemm_f16f32f32_nt():
101
    run_gemm(1024, 1024, 1024, False, False, "float16", "float32", "float32", 128, 128, 32)
102
    run_gemm(1024, 1024, 1024, False, True, "float16", "float32", "float32", 128, 128, 32)
103
104
    run_gemm(1024, 1024, 1024, True, True, "float16", "float32", "float32", 128, 128, 32)
    run_gemm(1024, 1024, 1024, True, False, "float16", "float32", "float32", 128, 128, 32)
105
106
107
    run_gemm(1024, 1024, 1024, False, True, "float16", "float32", "float32", 128, 128, 32, k_pack=2)


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
def matmul_rs(
    M,
    N,
    K,
    block_M,
    block_N,
    block_K,
    trans_A,
    trans_B,
    in_dtype,
    out_dtype,
    accum_dtype,
    num_stages,
    threads,
    k_pack=1,
):
    A_shape = (K, M) if trans_A else (M, K)
    B_shape = (N, K) if trans_B else (K, N)
    A_shared_shape = (block_K, block_M) if trans_A else (block_M, block_K)
    B_shared_shape = (block_N, block_K) if trans_B else (block_K, block_N)
    vec_size = 4 * k_pack

    @T.prim_func
131
132
133
134
135
    def main(
            A: T.Tensor(A_shape, in_dtype),
            B: T.Tensor(B_shape, in_dtype),
            C: T.Tensor((M, N), out_dtype),
    ):
136
137
138
139
140
141
142
143
144
145
146
147
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):
            A_shared = T.alloc_shared(A_shared_shape, in_dtype)
            A_local = T.alloc_fragment(A_shared_shape, in_dtype)
            B_shared = T.alloc_shared(B_shared_shape, in_dtype)
            C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
            T.clear(C_local)
            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                if trans_A:
                    T.copy(A[k * block_K, by * block_M], A_shared, coalesced_width=vec_size)
                    T.copy(A_shared, A_local)
                else:
                    T.copy(A[by * block_M, k * block_K], A_shared, coalesced_width=vec_size)
148
                    T.copy(A_shared, A_local)
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
                if trans_B:
                    T.copy(B[bx * block_N, k * block_K], B_shared, coalesced_width=vec_size)
                else:
                    T.copy(B[k * block_K, bx * block_N], B_shared, coalesced_width=vec_size)
                T.gemm(A_local, B_shared, C_local, trans_A, trans_B, k_pack=k_pack)
            T.copy(C_local, C[by * block_M, bx * block_N])

    return main


def run_gemm_rs(
    M,
    N,
    K,
    trans_A,
    trans_B,
    in_dtype,
    out_dtype,
    dtypeAccum,
    block_M,
    block_N,
    block_K,
    num_stages=0,
    num_threads=128,
    k_pack=1,
):
175
    program = matmul_rs(
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
        M,
        N,
        K,
        block_M,
        block_N,
        block_K,
        trans_A,
        trans_B,
        in_dtype,
        out_dtype,
        dtypeAccum,
        num_stages,
        num_threads,
        k_pack=k_pack,
    )
    kernel = tl.compile(program, out_idx=[2])
    profiler = kernel.get_profiler()

    def ref_program(A, B):
        import torch

        if trans_A:
            A = A.T
        if trans_B:
            B = B.T
        return (A @ B).to(torch.__getattribute__(out_dtype))

    profiler.assert_allclose(ref_program, atol=1e-2, rtol=1e-2)


@tilelang.testing.requires_rocm
def test_gemm_rs_f16f32f32_nt():
    run_gemm_rs(1024, 1024, 1024, False, False, "float16", "float32", "float32", 128, 128, 32)
    run_gemm_rs(1024, 1024, 1024, False, True, "float16", "float32", "float32", 128, 128, 32)
    run_gemm_rs(1024, 1024, 1024, True, True, "float16", "float32", "float32", 128, 128, 32)
    run_gemm_rs(1024, 1024, 1024, True, False, "float16", "float32", "float32", 128, 128, 32)


214
215
if __name__ == "__main__":
    tilelang.testing.main()