codegen_cuda.cc 79.5 KB
Newer Older
1
2
3
4
5
6
/*!
 * \file target/codegen.cc
 */

#include "codegen_cuda.h"
#include <tvm/arith/analyzer.h>
7
#include <tvm/ffi/function.h>
8
#include <tvm/tir/index_map.h>
9
10
11
12
13
14
15
16
#include <tvm/tir/op.h>

#include <cmath>
#include <string>
#include <utility>
#include <vector>

#include "../op/builtin.h"
17
#include "./ptx.h"
18
#include "arith/pattern_match.h"
19
20
21

namespace tvm {
namespace codegen {
22
using namespace tvm::tl::codegen;
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
static std::string GetFP8Type(DataType type) {
  std::stringstream stream;
  int32_t lanes = type.lanes();
  std::string vec;
  if (type.is_scalar()) {
    vec = "";
  } else if (lanes == 2) {
    vec = "_2";
  } else if (lanes == 4) {
    vec = "_4";
  } else if (lanes == 8) {
    vec = "_8";
  } else if (lanes == 16) {
    vec = "_16";
  } else {
    LOG(FATAL) << "Only support scalar and vector types of width (2, 4, 8, 16) "
                  "for FP8";
  }
42
43
  if (type.is_float8_e4m3fn() || type.is_float8_e4m3fnuz() ||
      type.is_float8_e4m3()) {
44
    stream << "fp8_e4" << vec << "_t";
45
46
  } else if (type.is_float8_e5m2() || type.is_float8_e5m2fnuz() ||
             type.is_float8_e5m2()) {
47
48
    stream << "fp8_e5" << vec << "_t";
  } else {
49
    LOG(FATAL) << "Unsupported FP8 type in CUDA codegen but got " << type;
50
51
52
53
  }
  return stream.str();
}

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
std::string GetFP6Type(DataType type) {
  std::stringstream stream;
  int32_t lanes = type.lanes();
  std::string vec;
  if (type.is_scalar()) {
    vec = "";
  } else if (lanes == 2) {
    vec = "x2";
  } else if (lanes == 4) {
    vec = "x4";
  } else if (lanes == 8) {
    vec = "x8";
  } else if (lanes == 16) {
    vec = "x16";
  } else {
    LOG(FATAL)
        << "Only support scalar and vector types of width (2, 4) for FP6";
  }
  stream << "__nv_fp6";
  std::string suffix;
  if (type.code() == DataType::kFloat6_e2m3fn) {
    suffix = "_e2m3";
  } else if (type.code() == DataType::kFloat6_e3m2fn) {
    suffix = "_e3m2";
  } else {
    LOG(FATAL) << "Unsupported FP6 type in CUDA codegen";
  }
  stream << vec << suffix;
  return stream.str();
}

std::string GetFP4Type(DataType type) {
  std::stringstream stream;
  int32_t lanes = type.lanes();
  std::string vec;
  if (type.is_scalar()) {
    vec = "";
  } else if (lanes == 2) {
    vec = "x2";
  } else if (lanes == 4) {
    vec = "x4";
  } else if (lanes == 8) {
    vec = "x8";
  } else if (lanes == 16) {
    vec = "x16";
  } else {
    LOG(FATAL)
        << "Only support scalar and vector types of width (2, 4) for FP4";
  }
  stream << "__nv_fp4";
  std::string suffix;
  if (type.code() == DataType::kFloat4_e2m1fn) {
    suffix = "_e2m1";
  } else {
    LOG(FATAL) << "Unsupported FP4 type in CUDA codegen";
  }
  stream << vec << suffix;
  return stream.str();
}

114
115
CodeGenTileLangCUDA::CodeGenTileLangCUDA() {
  restrict_keyword_ = "__restrict__";
116
117
118
119
120
  vid_global_barrier_state_ =
      name_supply_->FreshName(runtime::symbol::tvm_global_barrier_state);
  vid_global_barrier_expect_ = name_supply_->FreshName("__barrier_expect");
  ICHECK_EQ(vid_global_barrier_state_,
            runtime::symbol::tvm_global_barrier_state);
121
}
122

123
124
125
void CodeGenTileLangCUDA::PrintFuncPrefix(std::ostream &os) {
  os << "extern \"C\" __global__ ";
}
126
127

class LaunchConfigExtractor : public tir::StmtVisitor {
128
129
private:
  void VisitStmt_(const AttrStmtNode *op) final {
130
131
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
132
133
      if (iv->var->name_hint == "threadIdx.x" ||
          iv->thread_tag == "threadIdx.x") {
134
        threadIdx_x_ext = op->value;
135
136
      } else if (iv->var->name_hint == "threadIdx.y" ||
                 iv->thread_tag == "threadIdx.y") {
137
        threadIdx_y_ext = op->value;
138
139
      } else if (iv->var->name_hint == "threadIdx.z" ||
                 iv->thread_tag == "threadIdx.z") {
140
141
142
143
144
145
        threadIdx_z_ext = op->value;
      }
    }
    StmtVisitor::VisitStmt_(op);
  }

146
public:
147
148
149
150
151
  PrimExpr threadIdx_x_ext = Integer(1);
  PrimExpr threadIdx_y_ext = Integer(1);
  PrimExpr threadIdx_z_ext = Integer(1);
};

152
void CodeGenTileLangCUDA::PrintExtraAttrs(const PrimFunc &f) {
153
154
155
  LaunchConfigExtractor extractor;
  extractor(f->body);
  arith::Analyzer analyzer;
156
157
158
159
160
  PrimExpr threadIdx_ext =
      analyzer.Simplify(extractor.threadIdx_x_ext * extractor.threadIdx_y_ext *
                        extractor.threadIdx_z_ext);
  if (const IntImmNode *const threadIdx_ext_int =
          threadIdx_ext.as<IntImmNode>()) {
161
    if (threadIdx_ext_int->value == 1) {
162
163
      // unable to extract the number of threads per block, hence directly
      // return
164
165
      return;
    }
166
    stream << " __launch_bounds__(" << threadIdx_ext_int->value << ", 1)";
167
168
169
170
171
172
173
  }
}

std::string CodeGenTileLangCUDA::Finish() {
  if (need_mma_h_) {
    decl_stream << "#include <mma.h>\n";
  }
174
175
176
177
178
179
180
181
  if (enable_fp8_) {
    decl_stream << "#include <tl_templates/cuda/cuda_fp8.h>\n";
  }

  if (need_math_constants_h_) {
    decl_stream << "#include <math_constants.h>\n";
  }

182
183
184
185
  if (need_cooperative_groups_) {
    decl_stream << "#include <cooperative_groups.h>\n";
  }

186
  decl_stream << "#include <tl_templates/cuda/gemm.h>\n";
187
188
189
  if (enable_sparse_gemm_) {
    decl_stream << "#include <tl_templates/cuda/gemm_sp.h>\n";
  }
190
191
192
193
  decl_stream << "#include <tl_templates/cuda/copy.h>\n";
  decl_stream << "#include <tl_templates/cuda/reduce.h>\n";
  decl_stream << "#include <tl_templates/cuda/ldsm.h>\n";
  decl_stream << "#include <tl_templates/cuda/threadblock_swizzle.h>\n";
194
  decl_stream << "#include <tl_templates/cuda/debug.h>\n";
195
196
197
  decl_stream << "#ifdef ENABLE_BF16\n";
  decl_stream << "#include <tl_templates/cuda/cuda_bf16_fallbacks.cuh>\n";
  decl_stream << "#endif\n";
198
199

  if (need_global_barrier_) {
200
201
    decl_stream << "__device__ unsigned " << vid_global_barrier_state_
                << " = 0;\n";
202
  }
203
  decl_stream << "\n";
204

205
206
207
  return CodeGenC::Finish();
}

208
void CodeGenTileLangCUDA::VisitStmt_(const tir::ForNode *op) {
209
210
211
212
  if (op->kind == tir::ForKind::kUnrolled) {
    PrintIndent();
    stream << "#pragma unroll\n";
  }
213
214
  std::string extent =
      PrintExpr(arith::Analyzer().Simplify(op->extent + op->min));
215
216
217
218
219
  PrintIndent();
  std::string vid = AllocVarID(op->loop_var.get());
  std::string start = PrintExpr(op->min);
  stream << "for (";
  PrintType(op->loop_var.dtype(), stream);
220
221
  stream << ' ' << vid << " = " << start << "; " << vid << " < " << extent
         << "; ++" << vid << ") {\n";
222
223
224
225
226
227
228
  int for_scope = BeginScope();
  PrintStmt(op->body);
  this->EndScope(for_scope);
  PrintIndent();
  stream << "}\n";
}

229
void CodeGenTileLangCUDA::BindThreadIndex(const IterVar &iv) {
230
  ICHECK(!var_idmap_.count(iv->var.get()));
231
232
  var_idmap_[iv->var.get()] =
      CastFromTo(iv->thread_tag, DataType::UInt(32), iv->var.dtype());
233
234
}

235
void CodeGenTileLangCUDA::PrintType(DataType t, std::ostream &os) { // NOLINT(*)
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
  int lanes = t.lanes();
  if (t.is_handle()) {
    ICHECK(t.is_scalar()) << "do not yet support vector types";
    os << "void*";
    return;
  }

  if (t.is_void()) {
    os << "void";
    return;
  }

  if (t == tl::cuTensorMapType()) {
    os << "CUtensorMap";
    return;
  }

  bool fail = false;
  if (t.is_float()) {
    switch (t.bits()) {
256
    case 16:
257
      enable_fp16_ = true;
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
      if (t.is_scalar()) {
        os << "half_t";
      } else if (lanes <= 8) {
        // Emit CUDA code to access fp16 vector elements.
        //
        // half4 is stored as uint2
        //
        // h4.x is emitted as *(half2*)(&(u2.x)).x
        // h4.y is emitted as *(half2*)(&(u2.x)).y
        // h4.z is emitted as *(half2*)(&(u2.y)).x
        // h4.w is emitted as *(half2*)(&(u2.y)).y
        //
        ICHECK_EQ(lanes % 2, 0) << "only support even lane for half type";
        os << "uint" << lanes / 2;
      } else {
273
        fail = true;
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
      }
      break;
    case 32:
      if (lanes <= 4) {
        os << "float";
      } else if (lanes <= 8) {
        // Emit CUDA code to access fp32 vector elements for 4 < lanes <= 8.
        //
        // float8 is stored as ulonglong4
        //
        // f8.v1 is emitted as *(float2*)(&(ul4.x)).x
        // f8.v2 is emitted as *(float2*)(&(ul4.x)).y
        //
        ICHECK_EQ(lanes % 2, 0)
            << "only support even lane for float type with lanes > 4";
        os << "ulonglong" << lanes / 2;
      } else {
        fail = true;
      }
      break;
    case 64:
      os << "double";
      break;
    default:
      fail = true;
      break;
300
    }
301
302
303
304
    if (!fail && (t.is_scalar() || t.bits() == 16))
      return;
    if (!fail && (lanes > 4 && lanes <= 8 && t.bits() == 32))
      return;
305
306
307
308
309
    if (!fail && (lanes >= 2 && lanes <= 4)) {
      os << lanes;
      return;
    }
  } else if (t.is_bfloat16()) {
310
    enable_bf16_ = true;
311
312
313
314
315
316
317
318
    if (t.is_scalar()) {
      os << "bfloat16_t";
    } else if (lanes <= 8) {
      ICHECK_EQ(lanes % 2, 0) << "only support even lane for half type";
      os << "uint" << lanes / 2;
    } else {
      fail = true;
    }
319
320
    if (!fail)
      return;
321
  } else if (t.is_float8()) {
322
323
324
    enable_fp8_ = true;
    os << GetFP8Type(t);
    return;
325
326
327
328
329
330
331
332
333
334
335
336
  } else if (t.is_float6()) {
    enable_fp6_ = true;
    if (t.lanes() <= 4) {
      os << GetFP6Type(t);
    }
    return;
  } else if (t.is_float4()) {
    enable_fp4_ = true;
    if (t.lanes() <= 4) {
      os << GetFP4Type(t);
    }
    return;
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
  } else if (t == DataType::Bool()) {
    os << "bool";
    return;
  } else if (t.is_vector_bool()) {
    // CUDA does not support bool vectors.
    // Use ushort vectors to represent instead.
    int n = t.lanes();
    if (n <= 4) {
      os << "ushort" << n;
      return;
    }
  } else if (t.is_uint() || t.is_int()) {
    if (t.is_uint()) {
      os << "u";
    }
    switch (t.bits()) {
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
    case 1: {
      if (t.is_scalar()) {
        os << "int";
        return;
      } else if (t.lanes() == 8) {
        os << "int8_t";
        return;
      } else if (t.lanes() == 16) {
        os << "int16_t";
        return;
      } else if (t.lanes() == 32) {
        os << "int";
        return;
      } else {
        LOG(FATAL) << "Cannot convert type " << t << " to CUDA type!";
368
      }
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
    }
    case 4: {
      if (t.is_scalar()) {
        os << "int";
        return;
      } else if (t.lanes() == 4) {
        os << "int16_t";
        return;
      } else if (t.lanes() == 8) {
        // directly 8 4-bit int in integer.
        os << "int";
        return;
      } else if (t.lanes() == 16) {
        os << "int2";
        return;
      } else if (t.lanes() == 32) {
        os << "int4";
        return;
      } else if (t.lanes() == 64) {
        os << "int8";
        return;
      } else {
        LOG(FATAL) << "Cannot convert type " << t << " to CUDA type!";
392
      }
393
394
395
396
    }
    case 8: {
      if (t.lanes() == 4) {
        // directly 4 8 bit int in integer.
397
        enable_int8_ = true;
398
399
400
401
402
403
404

        // We use int for int8x4 instead of char4 because using char4 is
        // likely to produce extra instructions to pack four int8 elements
        // into 32-bit data.
        os << "int";
        return;
      } else if (t.lanes() == 8) {
405
        enable_int8_ = true;
406
407
408
        os << "int2";
        return;
      } else if (t.lanes() == 16) {
409
        enable_int8_ = true;
410
411
412
413
        os << "int4";
        return;
      } else if (!t.is_uint() && t.is_scalar()) {
        os << "signed char";
414
        break;
415
416
      } else {
        os << "char";
417
418
        break;
      }
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
    }
    case 16: {
      if (t.is_scalar()) {
        os << "short";
      } else if (t.lanes() <= 4) {
        os << "short" << lanes;
      } else if (t.lanes() <= 8) {
        // Emit CUDA code to access int16 vector elements.
        //
        // short4 is stored as int2
        //
        // s4.x is emitted as *(short2*)(&(i2.x)).x
        // s4.y is emitted as *(short2*)(&(i2.x)).y
        // s4.z is emitted as *(short2*)(&(i2.y)).x
        // s4.w is emitted as *(short2*)(&(i2.y)).y
        //
        ICHECK_EQ(t.lanes() % 2, 0)
            << "only support even lane for shorT type with lanes > 4";
        os << "int" << t.lanes() / 2;
      } else {
        fail = true;
      }
      if (!fail) {
442
443
        return;
      }
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
      break;
    }
    case 32: {
      if (t.is_scalar()) {
        os << "int";
      } else if (t.lanes() <= 4) {
        os << "int" << t.lanes();
      } else if (t.lanes() <= 8) {
        // Emit CUDA code to access int32 vector elements for 4 < lanes <= 8.
        //
        // int8 is stored as longlong4
        //
        // i8.v1 is emitted as *(int2*)(&(l4.x)).x
        // i8.v2 is emitted as *(int2*)(&(l4.x)).y
        //
        ICHECK_EQ(lanes % 2, 0)
            << "only support even lane for int32 type with lanes > 4";
        os << "longlong" << lanes / 2;
      } else {
463
        fail = true;
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
      }
      if (!fail) {
        return;
      }
      break;
    }
    case 64: {
      if (t.is_scalar()) {
        os << "int64_t";
      } else if (t.lanes() == 2) {
        os << "longlong2";
      } else if (t.lanes() == 3) {
        os << "longlong3";
      } else if (t.lanes() == 4) {
        os << "longlong4";
      }
      return;
    }
    default:
      fail = true;
      break;
485
486
487
488
489
490
491
492
493
494
495
496
    }
    if (!fail && lanes == 1) {
      return;
    }
    if (!fail && (lanes >= 2 && lanes <= 4)) {
      os << lanes;
      return;
    }
  }
  LOG(FATAL) << "Cannot convert type " << t << " to CUDA type";
}

497
498
499
void CodeGenTileLangCUDA::PrintVecBinaryOp(const std::string &op, DataType t,
                                           PrimExpr lhs, PrimExpr rhs,
                                           std::ostream &os) { // NOLINT(*)
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
  // Declare the result.
  std::string sret = name_supply_->FreshName("_");
  this->PrintIndent();
  this->PrintType(t, stream);
  stream << ' ' << sret << ";\n";
  int ssa_scope = BeginScope();
  {
    // Unpack into individual ops.
    std::string vlhs = SSAGetID(PrintExpr(lhs), lhs.dtype());
    std::string vrhs = SSAGetID(PrintExpr(rhs), rhs.dtype());

    for (int i = 0, lanes = t.lanes(); i < lanes; ++i) {
      std::ostringstream value_temp;
      if (isalpha(op[0])) {
        value_temp << op << "(";
        PrintVecElemLoad(vlhs, lhs.dtype(), i, value_temp);
        value_temp << ", ";
        PrintVecElemLoad(vrhs, rhs.dtype(), i, value_temp);
        value_temp << ")";
      } else {
        value_temp << "(";
        PrintVecElemLoad(vlhs, lhs.dtype(), i, value_temp);
        value_temp << op;
        PrintVecElemLoad(vrhs, rhs.dtype(), i, value_temp);
        value_temp << ")";
      }
      PrintVecElemStore(sret, t, i, value_temp.str());
    }
  }
  EndScope(ssa_scope);
  os << sret;
}

533
534
535
void CodeGenTileLangCUDA::PrintVecElemLoad(const std::string &vec, DataType t,
                                           int i,
                                           std::ostream &os) { // NOLINT(*)
536
537
538
539
540
541
  if (t.is_scalar()) {
    os << vec;
    return;
  }

  static const char access[] = {'x', 'y', 'z', 'w'};
542
543
544
  ICHECK(i >= 0 && i < (t.bits() == 8                        ? 16
                        : (t.bits() == 16 || t.bits() == 32) ? 8
                                                             : 4));
545
546
547
548
549
550
551
552
553
  if (t.bits() == 8 && (t.is_int() || t.is_uint())) {
    std::string type_name = t.is_int() ? "char" : "unsigned char";
    if (t.lanes() == 2 || t.lanes() == 3) {
      os << vec << "." << access[i % t.lanes()];
    } else {
      std::string ac = t.lanes() == 4 ? vec : (vec + "." + access[i / 4]);
      os << "((" << type_name << ")(" << ac << " >> " << i % 4 * 8 << "))";
    }
  } else if (t.is_float16()) {
554
555
    os << "((half2*)(&(" << vec << "." << access[i / 2] << ")))->"
       << access[i % 2];
556
  } else if (t.is_bfloat16()) {
557
558
    os << "((nv_bfloat162*)(&(" << vec << "." << access[i / 2] << ")))->"
       << access[i % 2];
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
  } else if (t.lanes() > 4 && t.lanes() <= 8) {
    std::string type_name;
    if (t.bits() == 16) {
      if (t.is_int()) {
        type_name = "short";
      } else if (t.is_uint()) {
        type_name = "ushort";
      }
    } else if (t.bits() == 32) {
      if (t.is_int()) {
        type_name = "int";
      } else if (t.is_uint()) {
        type_name = "uint";
      } else if (t.is_float()) {
        type_name = "float";
      }
    }
    ICHECK(!type_name.empty());
577
578
    os << "((" << type_name << "2*)(&(" << vec << "." << access[i / 2]
       << ")))->" << access[i % 2];
579
580
581
582
583
  } else {
    os << vec << "." << access[i];
  }
}

584
585
void CodeGenTileLangCUDA::PrintVecElemStore(const std::string &vec, DataType t,
                                            int i, const std::string &value) {
586
587
  this->PrintIndent();
  static const char access[] = {'x', 'y', 'z', 'w'};
588
589
590
  ICHECK(i >= 0 && i < (t.bits() == 8                        ? 16
                        : (t.bits() == 16 || t.bits() == 32) ? 8
                                                             : 4));
591
592
  if (t.bits() == 8 && (t.is_int() || t.is_uint())) {
    if (t.lanes() == 2 || t.lanes() == 3) {
593
594
      stream << vec << '.' << access[i % t.lanes()] << "="
             << "(" << value << ");\n";
595
596
597
598
599
600
601
602
603
604
    } else {
      std::string ac = t.lanes() == 4 ? vec : (vec + "." + access[i / 4]);
      stream << ac << "=";
      // Do not read the first undef lane.
      if (i != 0) {
        stream << ac << " & ~(0x000000ff << " << i % 4 * 8 << ") |";
      }
      stream << "(" << value << " << " << i % 4 * 8 << ");\n";
    }
  } else if (t.is_float16()) {
605
606
    stream << "((half2*)(&(" << vec << "." << access[i / 2] << ")))->"
           << access[i % 2] << " = " << value << ";\n";
607
  } else if (t.is_bfloat16()) {
608
609
    stream << "((nv_bfloat162*)(&(" << vec << "." << access[i / 2] << ")))->"
           << access[i % 2] << " = " << value << ";\n";
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
  } else if (t.lanes() > 4 && t.lanes() <= 8) {
    std::string type_name;
    if (t.bits() == 16) {
      if (t.is_int()) {
        type_name = "short";
      } else if (t.is_uint()) {
        type_name = "ushort";
      }
    } else if (t.bits() == 32) {
      if (t.is_int()) {
        type_name = "int";
      } else if (t.is_uint()) {
        type_name = "uint";
      } else if (t.is_float()) {
        type_name = "float";
      }
    }
    ICHECK(!type_name.empty());
628
629
    stream << "((" << type_name << "2*)(&(" << vec << "." << access[i / 2]
           << ")))->" << access[i % 2] << " = " << value << ";\n";
630
631
632
633
634
  } else {
    stream << vec << "." << access[i] << " = " << value << ";\n";
  }
}

635
void CodeGenTileLangCUDA::PrintStorageSync(const CallNode *op) {
636
637
  auto args = op->args;
  const std::string &sync = args[0].as<StringImmNode>()->value;
638
639
640
641
  if (sync == "warp") {
    // DO nothing.
  } else if (sync == "shared" || sync == "shared.dyn") {
    this->PrintIndent();
642
643
644
645
646
647
648
649
650
651
652
653
654
655
    if (args.size() == 1) {
      this->stream << "__syncthreads();\n";
    } else if (args.size() == 2) {
      auto barrier_id = args[1].as<IntImmNode>()->value;
      this->stream << "tl::__sync_thread_partial<" << barrier_id << ">();\n";
    } else if (args.size() == 3) {
      auto barrier_id = args[1].as<IntImmNode>()->value;
      auto thread_count = args[2].as<IntImmNode>()->value;
      this->stream << "tl::__sync_thread_partial<" << barrier_id << ", "
                   << thread_count << ">();\n";
    } else {
      LOG(FATAL) << "Invalid number of arguments for storage sync: "
                 << args.size();
    }
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
  } else if (sync == "global") {
    if (!need_global_barrier_) {
      need_global_barrier_ = true;
    }
    // global synchronizer
    std::string is_load = PrintExpr(op->args[1]);
    std::string num_blocks = PrintExpr(op->args[2]);
    this->PrintIndent();
    // In theory only threadfence is needed
    // but we observed problems with only threadfence
    this->stream << "__threadfence_system();\n";
    this->PrintIndent();
    this->stream << "if (" << is_load << ") {\n";
    int wb = this->BeginScope();
    this->PrintIndent();
    this->stream << "atomicAdd(&" << vid_global_barrier_state_ << ", 1);\n";
    this->PrintIndent();
    std::string ptr = name_supply_->FreshName("pf");
    this->stream << "volatile unsigned* " << ptr << " = &"
                 << vid_global_barrier_state_ << ";\n";
    this->PrintIndent();
    this->stream << vid_global_barrier_expect_ << " += " << num_blocks << ";\n";
    this->PrintIndent();
    this->stream << "while (" << ptr << "[0] < " << vid_global_barrier_expect_
                 << ");\n";
    this->EndScope(wb);
    this->PrintIndent();
    this->stream << "}\n";
    this->PrintIndent();
    this->stream << "__syncthreads();\n";
686
687
688
  }
}

689
690
691
692
693
void CodeGenTileLangCUDA::PrintStorageScope(const std::string &scope,
                                            std::ostream &os) { // NOLINT(*)
  ICHECK_NE(scope, "global")
      << "Cannot allocate global memory when targeting CUDA. You must pass "
         "all global arrays as input instead";
694
  if (scope == "shared" || scope == "shared.barrier") {
695
696
697
698
699
700
    os << "__shared__ ";
  } else if (scope == "shared.dyn") {
    os << "extern __shared__ __align__(1024) ";
  }
}

701
702
703
704
std::string CodeGenTileLangCUDA::CastFromTo(std::string value, DataType from,
                                            DataType target) {
  if (from == target)
    return value;
705
706
707
708
  std::ostringstream os;
  os << "((";
  this->PrintType(target, os);
  os << ")";
709
710
  if (from.is_float16() && (target.is_int() || target.is_uint()) &&
      target.bits() == 8) {
711
712
713
714
715
716
717
718
719
720
    os << "(";
    if (target.is_uint()) {
      os << "u";
    }
    os << "int)";
  }
  os << value << ")";
  return os.str();
}

721
void CodeGenTileLangCUDA::VisitExpr_(const CastNode *op, std::ostream &os) {
722
723
724
725
726
  DataType from_ty = op->value.dtype();
  DataType target_ty = op->dtype;
  ICHECK_EQ(target_ty.lanes(), from_ty.lanes());

  // Emit simple C-style type conversion.
727
728
  if (from_ty.is_scalar())
    return CodeGenC::VisitExpr_(op, os);
729
730
731
732
733
734
735

  // We could emit make_float4 like calls, but the emitted code looks
  // too compact to read. Emit this as vectorized unary ops.
  std::string sret = name_supply_->FreshName("_");
  this->PrintIndent();
  this->PrintType(target_ty, stream);
  stream << ' ' << sret << ";\n";
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
  std::string src = SSAGetID(PrintExpr(op->value), from_ty);

  // Handle bfloat16 special cases with supported ops
  bool used_bf16_op = false;
  if (from_ty.is_bfloat16() || target_ty.is_bfloat16()) {
    std::ostringstream func_name;
    if (from_ty.is_bfloat16())
      func_name << "bf16";
    else if (from_ty.is_float())
      func_name << "float";
    if (from_ty.lanes() > 1)
      func_name << from_ty.lanes();
    func_name << "2";
    if (target_ty.is_bfloat16())
      func_name << "bf16";
    else if (target_ty.is_float())
      func_name << "float";
    else if (target_ty == DataType::Int(16))
      func_name << "int16";
    if (target_ty.lanes() > 1)
      func_name << target_ty.lanes();

    auto fname = func_name.str();
    if (bf16_supported_ops_.count(fname)) {
      used_bf16_op = true;
      stream << "#ifdef ENABLE_BF16\n";
      PrintIndent();
      stream << "reinterpret_cast<";
      if (target_ty.is_bfloat16())
        stream << "__nv_bfloat16";
      else
        PrintType(target_ty.element_of(), stream);
      if (target_ty.lanes() > 1)
        stream << target_ty.lanes();
      stream << " &>(" << sret << ") = fastertransformer::" << fname
             << "(reinterpret_cast<";
      if (from_ty.is_bfloat16())
        stream << "__nv_bfloat16";
      else
        PrintType(from_ty.element_of(), stream);
      if (from_ty.lanes() > 1)
        stream << from_ty.lanes();
      stream << " const &>(" << src << "));\n";
      stream << "#else\n";
780
781
    }
  }
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796

  // Fallback: elementwise cast
  for (int i = 0, lanes = from_ty.lanes(); i < lanes; ++i) {
    std::ostringstream val;
    val << "(";
    PrintType(target_ty.element_of(), val);
    val << ")(";
    PrintVecElemLoad(src, from_ty, i, val);
    val << ")";
    PrintVecElemStore(sret, target_ty, i, val.str());
  }

  if (used_bf16_op) {
    stream << "#endif\n";
  }
797
798
799
  os << sret;
}

800
801
802
803
void CodeGenTileLangCUDA::PrintCallExtern(Type ret_type, String global_symbol,
                                          const Array<PrimExpr> &args,
                                          bool skip_first_arg,
                                          std::ostream &os) { // NOLINT(*)
804
  DataType ret_dtype = GetRuntimeDataType(ret_type);
805
  if (ret_dtype.is_fixed_length_vector()) {
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
    //
    // Emit an unsupported vector call
    //
    // v = intrin_f((float4*)A[0], (float4*)B[0])
    //
    // as
    //
    // float4 __ret;
    // {
    //   float4 __arg0 = ((float4*)A)[0];
    //   float4 __arg1 = ((float4*)B)[0];
    //   __ret.x = intrin_f(__arg0.x, __arg1.x);
    //   __ret.y = intrin_f(__arg0.y, __arg1.y);
    //   __ret.z = intrin_f(__arg0.z, __arg1.z);
    //   __ret.w = intrin_f(__arg0.w, __arg1.w);
    // }
    // v = __ret;
    //
    // Declare the result vector.
    std::string sret = name_supply_->FreshName("_");
    this->PrintIndent();
    this->PrintType(ret_dtype, stream);
    stream << ' ' << sret << ";\n";
    {
      // Load arguments.
      std::vector<std::string> sargs;
      size_t arg_begin = static_cast<size_t>(skip_first_arg);
      for (size_t i = arg_begin; i < args.size(); ++i) {
        std::string val = SSAGetID(PrintExpr(args[i]), args[i].dtype());
        sargs.push_back(std::move(val));
      }

      // Emit a scalar call for each lane.
      for (int i = 0; i < ret_dtype.lanes(); ++i) {
        std::ostringstream scall;
        scall << global_symbol << "(";
        for (size_t j = 0; j < sargs.size(); ++j) {
843
844
          if (j > 0)
            scall << ", ";
845
846
847
848
849
850
851
852
          PrintVecElemLoad(sargs[j], args[arg_begin + j].dtype(), i, scall);
        }
        scall << ")";
        PrintVecElemStore(sret, ret_dtype, i, scall.str());
      }
    }
    os << sret;
  } else {
853
854
    CodeGenC::PrintCallExtern(ret_type, global_symbol, args, skip_first_arg,
                              os);
855
856
857
858
  }
}

// Print a reference expression to a buffer.
859
860
861
862
std::string CodeGenTileLangCUDA::GetBufferRef(DataType t,
                                              const BufferNode *buffer,
                                              PrimExpr index) {
  const VarNode *buffer_var = buffer->data.get();
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
  std::ostringstream os;
  std::string vid = GetVarID(buffer_var);
  std::string scope;
  if (alloc_storage_scope_.count(buffer_var)) {
    scope = alloc_storage_scope_.at(buffer_var);
  }
  // bool is_vol = IsVolatile(buffer_var);
  // always false for tl cutlass backend.
  bool is_vol = false;

  auto ptr_cast = [this, is_vol, scope](DataType pointed_to) {
    std::ostringstream ptr_os;
    ptr_os << "(";
    if (is_vol) {
      ptr_os << "volatile ";
    }
    if (!scope.empty() && IsScopePartOfType()) {
      PrintStorageScope(scope, ptr_os);
    }
    PrintType(pointed_to, ptr_os);
    ptr_os << "*)";
    return ptr_os.str();
  };

  DataType buffer_element_dtype = buffer->dtype;

  std::string buffer_str = vid;
  if (!HandleTypeMatch(buffer_var, buffer_element_dtype) || is_vol) {
    std::stringstream temp;
    temp << "(" << ptr_cast(buffer_element_dtype) << vid << ")";
    buffer_str = temp.str();
  }
895
896
897
898
899
900
901
  if (scope.empty()) {
    scope = GetPtrStorageScope(buffer->data);
  }
  if (scope == "local.var") {
    os << vid;
    return os.str();
  }
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
  std::string index_str = PrintExpr(index);
  if (t.bits() == 4 || (t.bits() == 1 && t.is_int())) {
    // This is a special case, because CodegenCUDA::PrintType()
    // returns "int" for bool and for 4-bit integers. In most cases,
    // we divide by the number of lanes to determine the index.
    // However, the backing type for scalar int4 and scalar bool is
    // int32.  Therefore, we need to divide by the ratio of their
    // sizes in that case.
    int div_factor = (t.lanes() == 1) ? (32 / t.bits()) : t.lanes();

    os << "*("
       << "(" << ptr_cast(t) << vid << ")"
       << " + " << index_str << " / " << div_factor << ")";
  } else if (t == buffer_element_dtype) {
    os << buffer_str << "[" << index_str << "]";
  } else {
    os << "*" << ptr_cast(t) << "(" << buffer_str << " + " << index_str << ")";
  }

  return os.str();
}

924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
/**
 * @brief Emit CUDA/TensorLib-specific code for a call expression.
 *
 * This visitor handles CallNode intrinsics and builtins that require emitting
 * CUDA/TL-specific code (inline PTX/ASM sequences, TensorLanguage runtime
 * calls, WMMA/TMA helpers, barriers, cp.async primitives, index-map based
 * stores, reinterpret/packing helpers, and various mma/ldmatrix patterns). The
 * function writes the generated code to the provided output stream and falls
 * back to the C codegen for unrecognized calls.
 *
 * The method recognizes and emits code for (non-exhaustive): cp.async and its
 * commit/wait variants, tma_load/store and im2col variants, ptX
 * ldmatrix/stmatrix helpers, mbarrier APIs, cooperative grid sync, WMMA/legacy
 * MMA intrinsics (fill/load/store/mma/bmma/ptx_mma/ptx_mma_sp), low-level PTX
 * asm helpers (ldg32, cp_async bulk/init/arrive/wait barriers), reinterpret
 * paths for special small-float encodings (e.g., float4 e2m1fn), tl::tl_gemm
 * and related external calls, and other TL runtime calls.
 *
 * Side effects:
 * - Emits to `os` and the internal codegen output stream.
 * - May set internal feature flags (e.g., need_cooperative_groups_,
 * need_mma_h_, need_cast_smem_ptr_to_int_, enable_sparse_gemm_).
 * - May open/close SSA scopes and mutate internal variable mappings.
 * - May call LOG(FATAL) / CHECK / ICHECK on invalid or unsupported argument
 *   patterns.
 *
 * @param op The call node to generate code for; the function inspects op->op
 *           and op->args to determine the appropriate emission.
 * @param os  Output stream to receive expression-level output when the caller
 *            expects an expression result (some paths write directly to the
 *            member stream instead).
 */
956
void CodeGenTileLangCUDA::VisitExpr_(const CallNode *op, std::ostream &os) {
957
958
  auto print_extern_call_stmt = [&](std::string name, size_t start = 0,
                                    size_t end = 0) {
959
960
961
962
    // Cache context into a private ss, otherwise the let node may generate
    // within the function call arguments.
    std::ostringstream ss;

963
964
    for (size_t i = start; i < op->args.size() - end; i++) {
      if (i > start)
965
966
        ss << ", ";
      ss << this->PrintExpr(op->args[i]);
967
    }
968
969
970
971

    this->PrintIndent();
    this->stream << name << "(";
    this->stream << ss.str();
972
973
    this->stream << ");\n";
  };
974
975
976
977
978
979
980
981
982
983
984
985
986
  auto print_mbarrier_obj = [&](PrimExpr barrier_id) {
    std::ostringstream ss;
    if (barrier_id.as<IntImmNode>()) {
      // incase the barrier_id is an integer, we need to print the barrier_id as
      // an integer
      ss << mbarrier_name_ << "[" << barrier_id << "]";
    } else {
      // otherwise may be a T.get_mbarrier() call or BufferLoad Node
      // we need to print the barrier_id as a string
      ss << this->PrintExpr(barrier_id);
    }
    return ss.str();
  };
987
988
989
990
991
992
  if (op->op.same_as(builtin::ptx_cp_async())) {
    std::string dst = this->PrintExpr(op->args[0]);
    std::string dst_offset = this->PrintExpr(op->args[1]);
    std::string src = this->PrintExpr(op->args[2]);
    std::string src_offset = this->PrintExpr(op->args[3]);
    std::string size = this->PrintExpr(op->args[4]);
993
994
    // use size of argument list to indicate whether or not to use predicated
    // cp.async
995
996
    if (op->args.size() == 5) {
      this->PrintIndent();
997
998
      this->stream << "tl::cp_async_gs<" << size << ">(" << dst << "+"
                   << dst_offset << ", " << src << "+" << src_offset << ");\n";
999
1000
1001
    } else {
      std::string condition = this->PrintExpr(op->args[5]);
      this->PrintIndent();
1002
1003
1004
      this->stream << "tl::cp_async_gs_conditional<" << size << ">(" << dst
                   << "+" << dst_offset << ", " << src << "+" << src_offset
                   << ", " << condition << ");\n";
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
    }
  } else if (op->op.same_as(builtin::ptx_commit_group())) {
    print_extern_call_stmt("tl::cp_async_commit");
  } else if (op->op.same_as(builtin::ptx_wait_group())) {
    int n = Downcast<IntImm>(op->args[0])->value;
    std::string func_name = "tl::cp_async_wait<" + std::to_string(n) + ">";
    print_extern_call_stmt(func_name, 1);
  } else if (op->op.same_as(builtin::create_barriers())) {
    this->PrintIndent();
    int barrier_count = Downcast<IntImm>(op->args[0])->value;
1015
1016
    auto mbarrier_storage_name = mbarrier_name_ + "_mem";
    this->stream << "__shared__ uint64_t " << mbarrier_storage_name << "["
1017
                 << barrier_count << "];\n";
1018
1019
1020
    this->PrintIndent();
    this->stream << "auto " << mbarrier_name_ << " = reinterpret_cast<"
                 << mbarrier_dtype_ << "*>(" << mbarrier_storage_name << ");\n";
1021
  } else if (op->op.same_as(tl::get_mbarrier())) {
1022
    ICHECK_EQ(op->args.size(), 1);
1023
    std::string barrier_id = this->PrintExpr(op->args[0]);
1024
    os << mbarrier_name_ + "[" + barrier_id + "]";
1025
  } else if (op->op.same_as(builtin::ptx_arrive_barrier())) {
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
    if (op->args.size() == 1) {
      this->PrintIndent();
      auto mbarrier_obj = print_mbarrier_obj(op->args[0]);
      this->stream << mbarrier_obj << ".arrive();\n";
    } else if (op->args.size() == 3) {
      this->PrintIndent();
      auto mbarrier_obj = print_mbarrier_obj(op->args[0]);
      auto cta_id = this->PrintExpr(op->args[1]);
      auto pred = this->PrintExpr(op->args[2]);
      this->stream << mbarrier_obj << ".arrive(" << cta_id << ", " << pred
                   << ");\n";
    } else {
      LOG(FATAL) << "Invalid parameter  for tl::arrive_barrier "
                 << op->args.size();
    }
1041
  } else if (op->op.same_as(builtin::ptx_init_barrier_thread_count())) {
1042
1043
1044
1045
1046
    ICHECK_EQ(op->args.size(), 2);
    this->PrintIndent();
    auto mbarrier_obj = print_mbarrier_obj(op->args[0]);
    auto arrive_count = this->PrintExpr(op->args[1]);
    this->stream << mbarrier_obj << ".init(" << arrive_count << ");\n";
1047
  } else if (op->op.same_as(builtin::ptx_arrive_barrier_expect_tx())) {
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
    if (op->args.size() == 2) {
      this->PrintIndent();
      auto mbarrier_obj = print_mbarrier_obj(op->args[0]);
      auto transaction_bytes = this->PrintExpr(op->args[1]);
      this->stream << mbarrier_obj << ".arrive_and_expect_tx("
                   << transaction_bytes << ");\n";
    } else if (op->args.size() == 4) {
      this->PrintIndent();
      auto mbarrier_obj = print_mbarrier_obj(op->args[0]);
      auto transaction_bytes = this->PrintExpr(op->args[1]);
      auto cta_id = this->PrintExpr(op->args[2]);
      auto pred = this->PrintExpr(op->args[3]);
      this->stream << mbarrier_obj << ".arrive_and_expect_tx("
                   << transaction_bytes << ", " << cta_id << ", " << pred
                   << ");\n";
    } else {
      LOG(FATAL) << "Invalid parameter  for tl::arrive_barrier_expect_tx "
                 << op->args.size();
    }
1067
1068
  } else if (op->op.same_as(builtin::ptx_cp_async_barrier())) {
    print_extern_call_stmt("tl::mbarrier_cp_async_arrive");
1069
1070
  } else if (op->op.same_as(tl::ptx_cp_async_barrier_noinc())) {
    print_extern_call_stmt("tl::mbarrier_cp_async_arrive_noinc");
1071
  } else if (op->op.same_as(tl::mbarrier_expect_tx())) {
1072
1073
1074
1075
1076
1077
    ICHECK_EQ(op->args.size(), 2);
    this->PrintIndent();
    auto mbarrier_obj = print_mbarrier_obj(op->args[0]);
    auto transaction_bytes = this->PrintExpr(op->args[1]);
    this->stream << mbarrier_obj << ".expect_transaction(" << transaction_bytes
                 << ");\n";
1078
  } else if (op->op.same_as(tl::mbarrier_wait_parity())) {
1079
1080
1081
1082
1083
    ICHECK_EQ(op->args.size(), 2);
    this->PrintIndent();
    auto mbarrier_obj = print_mbarrier_obj(op->args[0]);
    auto phase = this->PrintExpr(op->args[1]);
    this->stream << mbarrier_obj << ".wait(" << phase << ");\n";
1084
1085
  } else if (op->op.same_as(tl::no_set_max_nreg())) {
    return;
1086
  } else if (op->op.same_as(tl::tma_load())) {
1087
    std::ostringstream ss;
1088
    ICHECK_GE(op->args.size(), 2);
1089
1090
1091
    auto eviction_policy =
        this->eviction_policy_names_
            [op->args[op->args.size() - 1].as<IntImmNode>()->value];
1092
1093
1094
1095
1096
1097
    // Simplify the code by using the default eviction policy
    if (eviction_policy != "EVICT_NORMAL") {
      ss << "tl::tma_load<tl::CacheHintSm90::" << eviction_policy << ">(";
    } else {
      ss << "tl::tma_load(";
    }
1098
    auto desc = op->args[0];
1099
    ss << this->PrintExpr(desc) << ", ";
1100
    ss << print_mbarrier_obj(op->args[1]) << ", ";
1101
    for (size_t i = 2; i < op->args.size() - 1; i++) {
1102
      if (i > 2)
1103
1104
        ss << ", ";
      ss << this->PrintExpr(op->args[i]);
1105
    }
1106
1107
1108
    ss << ");\n";
    this->PrintIndent();
    this->stream << ss.str();
1109
  } else if (op->op.same_as(tl::tma_load_im2col())) {
1110
    std::stringstream ss;
1111
1112
1113
1114
1115
1116
1117
1118
    auto eviction_policy =
        this->eviction_policy_names_
            [op->args[op->args.size() - 1].as<IntImmNode>()->value];
    if (eviction_policy != "EVICT_NORMAL") {
      ss << "tl::tma_load_im2col<tl::CacheHintSm90::" << eviction_policy << ">";
    } else {
      ss << "tl::tma_load_im2col";
    }
1119
    print_extern_call_stmt(ss.str(), 0, 1);
1120
  } else if (op->op.same_as(tl::tma_store())) {
1121
    std::stringstream ss;
1122
1123
1124
1125
1126
1127
1128
1129
    auto eviction_policy =
        this->eviction_policy_names_
            [op->args[op->args.size() - 1].as<IntImmNode>()->value];
    if (eviction_policy != "EVICT_NORMAL") {
      ss << "tl::tma_store<tl::CacheHintSm90::" << eviction_policy << ">";
    } else {
      ss << "tl::tma_store";
    }
1130
    print_extern_call_stmt(ss.str(), 0, 1);
1131
  } else if (op->op.same_as(tl::ptx_ldmatrix())) {
1132
1133
1134
    int trans = Downcast<IntImm>(op->args[0])->value;
    int num = Downcast<IntImm>(op->args[1])->value;
    std::string func_name = "tl::ptx_ldmatrix_x" + std::to_string(num);
1135
1136
    if (trans == 1)
      func_name += "_trans";
1137
    print_extern_call_stmt(func_name, 2);
1138
  } else if (op->op.same_as(tl::ptx_stmatrix())) {
1139
1140
1141
    int trans = Downcast<IntImm>(op->args[0])->value;
    int num = Downcast<IntImm>(op->args[1])->value;
    std::string func_name = "tl::ptx_stmatrix_x" + std::to_string(num);
1142
1143
    if (trans == 1)
      func_name += "_trans";
1144
    print_extern_call_stmt(func_name, 2);
1145
  } else if (op->op.same_as(tl::fence_proxy_async())) {
1146
    print_extern_call_stmt("tl::fence_proxy_async");
1147
  } else if (op->op.same_as(tl::tma_store_arrive())) {
1148
    print_extern_call_stmt("tl::tma_store_arrive");
1149
  } else if (op->op.same_as(tl::tma_store_wait())) {
1150
    print_extern_call_stmt("tl::tma_store_wait<0>");
1151
  } else if (op->op.same_as(tl::set_max_nreg())) {
1152
1153
1154
    this->PrintIndent();
    int nreg = Downcast<IntImm>(op->args[0])->value;
    int is_inc = Downcast<IntImm>(op->args[1])->value;
1155
1156
    std::string func_name =
        is_inc ? "tl::warpgroup_reg_alloc" : "tl::warpgroup_reg_dealloc";
1157
    this->stream << func_name << "<" << std::to_string(nreg) << ">();\n";
1158
  } else if (op->op.same_as(tl::wait_wgmma())) {
1159
1160
1161
    this->PrintIndent();
    int num_mma = Downcast<IntImm>(op->args[0])->value;
    this->stream << "tl::wait_wgmma<" << std::to_string(num_mma) << ">();\n";
1162
  } else if (op->op.same_as(tl::pack_b16())) {
1163
1164
    os << "__pack_half2(" << this->PrintExpr(op->args[0]) << ", "
       << this->PrintExpr(op->args[1]) << ")";
1165
1166
1167
  } else if (op->op.same_as(tl::sync_grid())) {
    this->need_cooperative_groups_ = true;
    this->PrintIndent();
1168
    this->stream << "cooperative_groups::this_grid().sync();\n";
1169
1170
1171
  } else if (op->op.same_as(tl::loop_break())) {
    this->PrintIndent();
    this->stream << "break;\n";
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
  } else if (op->op.same_as(builtin::tvm_fill_fragment())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 6U);
    os << "nvcuda::wmma::fill_fragment(";
    this->PrintExpr(op->args[0], os);
    os << "[";
    this->PrintExpr(op->args[4], os);
    os << "], ";
    this->PrintExpr(op->args[5], os);
    os << ")";
  } else if (op->op.same_as(builtin::tvm_load_matrix_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::load_matrix_sync(";
    this->PrintExpr(op->args[0], os);
    os << "[";
    this->PrintExpr(op->args[4], os);
    os << "], ";
    this->PrintExpr(op->args[5], os);
    os << ", ";
    this->PrintExpr(op->args[6], os);
    os << ")";
  } else if (op->op.same_as(builtin::tvm_store_matrix_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::store_matrix_sync(";
    this->PrintExpr(op->args[5], os);
    os << ", ";
    this->PrintExpr(op->args[0], os);
    os << "[";
    this->PrintExpr(op->args[4], os);
    os << "], ";
    this->PrintExpr(op->args[6], os);
1205
    if (const StringImmNode *str = op->args[7].as<StringImmNode>()) {
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
      os << ", nvcuda::wmma::mem_" << str->value;
    } else {
      LOG(FATAL) << "Invalid parameters";
    }
    os << ")";
  } else if (op->op.same_as(builtin::tvm_mma_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::mma_sync(";
    for (int i = 0; i < 4; ++i) {
      this->PrintExpr(op->args[i * 2], os);
      os << "[";
      this->PrintExpr(op->args[i * 2 + 1], os);
      os << "]" << ((i < 3) ? ", " : ")");
    }
  } else if (op->op.same_as(builtin::tvm_bmma_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::bmma_sync(";
    for (int i = 0; i < 4; ++i) {
      this->PrintExpr(op->args[i * 2], os);
      os << "[";
      this->PrintExpr(op->args[i * 2 + 1], os);
      os << "]" << ((i < 3) ? ", " : ")");
    }
  } else if (op->op.same_as(builtin::ptx_mma())) {
    // arg 0: shape: mXnXkX
    // arg 1: A layout: row/col
    // arg 2: B layout: row/col
    // arg 3: A precision: fp16, fp64, ...
    // arg 4: B precision: fp16, fp64, ...
    // arg 5: C precision: fp32, fp64, ...
    // arg 6: A multiplicand
    // arg 7: A multiplicand index
    // arg 8: B multiplicand
    // arg 9: B multiplicand index
    // arg 10: C accumulator
    // arg 11: C accumulator index
    // arg 12: saturate
    // arg 13: (optional) 1-bit operator (xor or and)
    ICHECK(op->args.size() == 13U || op->args.size() == 14U);
    std::string shape = Downcast<StringImm>(op->args[0])->value;
    std::string A_layout = Downcast<StringImm>(op->args[1])->value;
    std::string B_layout = Downcast<StringImm>(op->args[2])->value;
    std::string A_dtype = Downcast<StringImm>(op->args[3])->value;
    std::string B_dtype = Downcast<StringImm>(op->args[4])->value;
    std::string C_dtype = Downcast<StringImm>(op->args[5])->value;
    std::string a_ref = this->PrintExpr(op->args[6]);
    std::string a_bias = this->PrintExpr(op->args[7]);
    std::string b_ref = this->PrintExpr(op->args[8]);
    std::string b_bias = this->PrintExpr(op->args[9]);
    std::string c_ref = this->PrintExpr(op->args[10]);
    std::string c_bias = this->PrintExpr(op->args[11]);
    bool saturate = Downcast<Bool>(op->args[12])->value;
1260
1261
1262
1263
1264
    std::string bit_op =
        op->args.size() > 13 ? Downcast<StringImm>(op->args[13])->value : "";
    std::string asm_code = PrintMMAAssembly(
        shape, A_layout, B_layout, A_dtype, B_dtype, C_dtype, a_ref, a_bias,
        b_ref, b_bias, c_ref, c_bias, "", "", "", bit_op, false, saturate);
1265
    this->PrintIndent();
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
    this->stream << asm_code;
  } else if (op->op.same_as(builtin::ptx_mma_sp())) {
    // arg 0: shape: mXnXkX
    // arg 1: A layout: row/col
    // arg 2: B layout: row/col
    // arg 3: A precision: fp16, fp32, ...
    // arg 4: B precision: fp16, fp32, ...
    // arg 5: C precision: fp16, fp32, ...
    // arg 6: A multiplicand pointer
    // arg 7: A multiplicand index
    // arg 8: B multiplicand pointer
    // arg 9: B multiplicand index
    // arg 10: C accumulator pointer
    // arg 11: C accumulator index
    // arg 12: metadata
    // arg 13: metadata index
    // arg 14: sparse_selector
    // arg 15: saturate
    ICHECK_EQ(op->args.size(), 16U);
    std::string shape = Downcast<StringImm>(op->args[0])->value;
    std::string A_layout = Downcast<StringImm>(op->args[1])->value;
    std::string B_layout = Downcast<StringImm>(op->args[2])->value;
    std::string A_dtype = Downcast<StringImm>(op->args[3])->value;
    std::string B_dtype = Downcast<StringImm>(op->args[4])->value;
    std::string C_dtype = Downcast<StringImm>(op->args[5])->value;
    std::string a_ref = this->PrintExpr(op->args[6]);
    std::string a_offset = this->PrintExpr(op->args[7]);
    std::string b_ref = this->PrintExpr(op->args[8]);
    std::string b_offset = this->PrintExpr(op->args[9]);
    std::string c_ref = this->PrintExpr(op->args[10]);
    std::string c_offset = this->PrintExpr(op->args[11]);
    std::string metadata = this->PrintExpr(op->args[12]);
    std::string metadata_offset = this->PrintExpr(op->args[13]);
    std::string sparse_selector = this->PrintExpr(op->args[14]);
    bool saturate = Downcast<Bool>(op->args[15])->value;
1301
    this->PrintIndent();
1302
    std::string asm_code = PrintMMAAssembly(
1303
1304
1305
        shape, A_layout, B_layout, A_dtype, B_dtype, C_dtype, a_ref, a_offset,
        b_ref, b_offset, c_ref, c_offset, metadata, metadata_offset,
        sparse_selector, "", true, saturate);
1306
1307
1308
1309
1310
1311
1312
1313
    this->stream << asm_code;
  } else if (op->op.same_as(builtin::ptx_ldmatrix())) {
    // arg 0: whether the matrix is loaded in column major format or not.
    // arg 1: number of matrices to load.
    // arg 2: The data type in the matrix, .b16 is the only accepted data type.
    // arg 3: pointer to local buffer.
    // arg 4: The offset of the element to store in the local buffer.
    // arg 5: pointer to the shared memory buffer to load.
1314
1315
    // arg 6: The offset of the start element of the row to load in shared
    // memory.
1316
1317
1318
1319
1320
1321
1322
1323
    ICHECK_EQ(op->args.size(), 7U);
    bool trans = Downcast<Bool>(op->args[0])->value;
    int num = Downcast<Integer>(op->args[1])->value;
    std::string type = Downcast<StringImm>(op->args[2])->value;
    std::string local_ptr = this->PrintExpr(op->args[3]);
    std::string local_elem_offset = this->PrintExpr(op->args[4]);
    std::string smem_ptr = this->PrintExpr(op->args[5]);
    if (trans && op->dtype.bits() == 8) {
1324
1325
      // Since ldmatrix assumes that a matrix element is 16 bit, it cannot
      // properly transpose an int8 matrix.
1326
1327
1328
1329
      std::string smem_stride = this->PrintExpr(op->args[6]);
      ICHECK(num == 4);
      os << "for (int i = 0; i < 16; ++i) {\n";
      os << local_ptr << "[" + local_elem_offset + " + i] = " << smem_ptr
1330
1331
1332
1333
         << "[(i % 8) / 4 * " + smem_stride +
                " * 16 + (threadIdx.x % 4) * 4 * " + smem_stride +
                "+ (i % 4) * " + smem_stride +
                " + threadIdx.x / 4 +  (i / 8) * 8];\n";
1334
1335
1336
      os << "}\n";
    } else {
      std::string smem_elem_offset = this->PrintExpr(op->args[6]);
1337
1338
1339
1340
1341
1342
      std::string func_name = "tl::ptx_ldmatrix_x" + std::to_string(num);
      if (trans == 1)
        func_name += "_trans";
      this->PrintIndent();
      this->stream << func_name << "(" << smem_ptr << " + " << smem_elem_offset
                   << ", " << local_ptr << " + " << local_elem_offset << ");\n";
1343
1344
1345
1346
1347
1348
1349
1350
1351
    }
  } else if (op->op.same_as(builtin::mma_store())) {
    int m = Downcast<Integer>(op->args[0])->value;
    int n = Downcast<Integer>(op->args[1])->value;
    std::string dst = this->PrintExpr(op->args[2]);
    std::string src = this->PrintExpr(op->args[3]);
    std::string src_offset = this->PrintExpr(op->args[4]);
    PrimExpr stride = op->args[5];

1352
1353
    ICHECK(m == 16 && n == 16)
        << "Only m == 16 && n == 16 case supported for now";
1354

1355
1356
1357
1358
1359
    // Each thread in a warp holds a certain number of elements of an MMA
    // output. For example, if we compute a 16x16 tile using MMA, each thread
    // holds 8 elements in its registers. So conceptually, a warp memory is
    // organized as a 32x8 block. A map from a 16x16 tile to a 32x8 block of
    // memory is specified by the index map below.
1360

1361
1362
    // To store the 32x8 output back to a 16x16 tile in shared or global memory,
    // we invert this map to determine the output location for each 8 element.
1363

1364
1365
    const auto index_map_func = ffi::Function::GetGlobal(
        "tir.index_map.shared_16x16_to_mma_32x8_layout");
1366

1367
1368
1369
    IndexMap index_map;
    if (!index_map_func) {
      Var i, j;
1370

1371
      // The index map is defined as follows:
1372
1373
1374
1375
1376
      index_map = IndexMap(
          {i, j}, {4 * FloorMod(i, 8) + FloorDiv(FloorMod(j, 8), 2),
                   4 * FloorDiv(j, 8) + FloorDiv(i, 8) * 2 + FloorMod(j, 2)});
    } else {
      index_map = IndexMap::FromFunc(2, *index_map_func);
1377
1378
1379
1380
1381
1382
1383
    }

    arith::Analyzer analyzer;
    auto inverse_index_map =
        index_map.Inverse({Range(0, m), Range(0, n)}, &analyzer);
    auto indices_16x16 = inverse_index_map->final_indices;

1384
1385
1386
    // "//" and "%" in the index map are translated to FloorDiv/Mod, but the
    // plain Div/Mod are fine. FloorDiv/Mod are supposed to be lowered before
    // they reach codegen, so manually replace them to the plain ones here.
1387
    class LowerFloorDivMod : public ExprMutator {
1388
1389
    public:
      PrimExpr VisitExpr_(const FloorDivNode *op) {
1390
1391
        return tir::Div(this->VisitExpr(op->a), this->VisitExpr(op->b));
      }
1392
      PrimExpr VisitExpr_(const FloorModNode *op) {
1393
1394
1395
1396
        return tir::Mod(this->VisitExpr(op->a), this->VisitExpr(op->b));
      }
    };

1397
1398
    auto dst_ind =
        LowerFloorDivMod()(indices_16x16[0] * stride + indices_16x16[1]);
1399
1400
1401
1402
1403
1404
1405
1406
1407

    var_idmap_[inverse_index_map->initial_indices[0].get()] = "threadIdx.x";
    var_idmap_[inverse_index_map->initial_indices[1].get()] = "local_id";
    if (op->dtype.bits() == 16) {
      os << "for (int local_id = 0; local_id < 8; local_id+=2) {\n";
      os << "*((uint *)&" << dst << "[" + this->PrintExpr(dst_ind) + "])"
         << " = "
         << "*((uint *)&" << src << "[" << src_offset << " + local_id]);\n";
      os << "}\n";
1408
    } else {
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
      os << "for (int local_id = 0; local_id < 8; ++local_id) {\n";
      os << dst << "[" + this->PrintExpr(dst_ind) + "]"
         << " = " << src << "[" << src_offset << " + local_id];\n";
      os << "}\n";
    }

  } else if (op->op.same_as(builtin::mma_fill())) {
    std::string num_elem = this->PrintExpr(op->args[0]);
    std::string dst = this->PrintExpr(op->args[1]);
    std::string dst_offset = this->PrintExpr(op->args[2]);

    os << "for (int i = 0; i < " << num_elem << "; ++i) {\n";
    os << dst << "[" << dst_offset << " + i] = 0.0;";
    os << "}\n";
  } else if (op->op.same_as(builtin::ptx_cp_async())) {
    std::string dst = this->PrintExpr(op->args[0]);
    std::string dst_offset = this->PrintExpr(op->args[1]);
    std::string src = this->PrintExpr(op->args[2]);
    std::string src_offset = this->PrintExpr(op->args[3]);
    std::string size = this->PrintExpr(op->args[4]);
    need_cast_smem_ptr_to_int_ = true;
1430
1431
    // use size of argument list to indicate whether or not to use predicated
    // cp.async
1432
    if (op->args.size() == 5) {
1433
1434
      this->stream << PrintCpAsyncAssembly(dst, dst_offset, src, src_offset,
                                           size);
1435
    } else {
1436
1437
      this->stream << PrintPredicatedCpAsyncAssembly(
          dst, dst_offset, src, src_offset, size, this->PrintExpr(op->args[5]));
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
    }
  } else if (op->op.same_as(builtin::ptx_cp_async_bulk())) {
    need_cast_smem_ptr_to_int_ = true;
    std::string dst = this->PrintExpr(op->args[0]);
    std::string dst_offset = this->PrintExpr(op->args[1]);
    std::string src = this->PrintExpr(op->args[2]);
    std::string src_offset = this->PrintExpr(op->args[3]);
    std::string size = this->PrintExpr(op->args[4]);
    int barrier_id = Downcast<IntImm>(op->args[5])->value;
    CHECK(barrier_id < barrier_count_);
1448
1449
1450
1451
    std::string barrier =
        barrier_name_ + "[" + std::to_string(barrier_id) + "]";
    this->stream << PrintCpAsyncBulkAsm(dst, dst_offset, src, src_offset, size,
                                        barrier);
1452
1453
1454
1455
  } else if (op->op.same_as(builtin::ptx_commit_group())) {
    this->stream << "__asm__ __volatile__(\"cp.async.commit_group;\");\n\n";
  } else if (op->op.same_as(builtin::ptx_wait_group())) {
    int n = Downcast<IntImm>(op->args[0])->value;
1456
1457
    this->stream << "__asm__ __volatile__(\"cp.async.wait_group " << n
                 << ";\");\n\n";
1458
1459
1460
1461
  } else if (op->op.same_as(builtin::ptx_init_barrier_thread_count())) {
    need_cast_smem_ptr_to_int_ = true;
    int barrier_id = Downcast<IntImm>(op->args[0])->value;
    CHECK(barrier_id < barrier_count_);
1462
1463
    std::string barrier =
        barrier_name_ + "[" + std::to_string(barrier_id) + "]";
1464
1465
1466
1467
1468
1469
    std::string thread_count = this->PrintExpr(op->args[1]);
    this->stream << PrintInitBarrierThreadCountAsm(barrier, thread_count);
  } else if (op->op.same_as(builtin::ptx_arrive_barrier())) {
    need_cast_smem_ptr_to_int_ = true;
    int barrier_id = Downcast<IntImm>(op->args[0])->value;
    CHECK(barrier_id < barrier_count_);
1470
1471
    std::string barrier =
        barrier_name_ + "[" + std::to_string(barrier_id) + "]";
1472
1473
1474
1475
1476
    this->stream << PrintArriveBarrierAsm(barrier);
  } else if (op->op.same_as(builtin::ptx_arrive_barrier_expect_tx())) {
    need_cast_smem_ptr_to_int_ = true;
    int barrier_id = Downcast<IntImm>(op->args[0])->value;
    CHECK(barrier_id < barrier_count_);
1477
1478
    std::string barrier =
        barrier_name_ + "[" + std::to_string(barrier_id) + "]";
1479
1480
1481
1482
1483
1484
    std::string byte_count = this->PrintExpr(op->args[1]);
    this->stream << PrintArriveBarrierExpectTxAsm(barrier, byte_count);
  } else if (op->op.same_as(builtin::ptx_wait_barrier())) {
    need_cast_smem_ptr_to_int_ = true;
    int barrier_id = Downcast<IntImm>(op->args[0])->value;
    CHECK(barrier_id < barrier_count_);
1485
1486
    std::string barrier =
        barrier_name_ + "[" + std::to_string(barrier_id) + "]";
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
    this->stream << PrintWaitBarrierAsm(barrier);
  } else if (op->op.same_as(builtin::ptx_ldg32())) {
    /*
    asm volatile (
        "{.reg .pred p;\n"
        " setp.ne.b32 p, %2, 0;\n"
        // " @p ld.global.nc.f32 %0, [%1];}\n"t
        " @p ld.global.nc.L2::128B.f32 %0, [%1];}\n"
        : "=f"(reg)
        : "l"(addr), "r"((int)guard)
    );
    */

    // get local
    std::string reg = this->PrintExpr(op->args[0]);
    // get guard
    std::string guard = this->PrintExpr(op->args[1]);
1504
    const BufferLoadNode *addr_buffer = op->args[2].as<BufferLoadNode>();
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
    std::string global_addr = this->PrintExpr(addr_buffer->indices[0]);
    std::string global_buffer = this->PrintExpr(addr_buffer->buffer->data);
    std::string local_addr = this->PrintExpr(op->args[3]);
    this->stream << "asm volatile (\n";
    this->stream << "\"{.reg .pred p;\\n\"\n";
    this->stream << "\" setp.ne.b32 p, %2, 0;\\n\"\n";
    this->stream << "\" @!p mov.b32 %0, 0;\\n\"\n";
    this->stream << "\" @p ld.global.nc.f32 %0, [%1];}\\n\"\n";
    // stream << "\" @p ld.global.nc.L2::128B.f32 %0, [%1];}\\n\"\n" ;
    stream << ": \"=f\"(" << reg << "[" << local_addr << "]"
           << ")\n";
1516
1517
    stream << ": \"l\"((void*)(" << global_buffer << "+" << global_addr
           << ")), \"r\"((int)" << guard << ")\n";
1518
    stream << ");\n";
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
  } else if (op->op.same_as(builtin::reinterpret())) {
    DataType tgt_dtype = op->dtype;
    DataType src_dtype = op->args[0]->dtype;
    PrimExpr value = op->args[0];

    // Handle float4_e2m1fn reinterpret
    if (!src_dtype.is_float4_e2m1fn() && !tgt_dtype.is_float4_e2m1fn()) {
      return CodeGenC::VisitExpr_(op, os);
    }
    if (src_dtype == tgt_dtype || tgt_dtype.lanes() * tgt_dtype.bits() ==
                                      src_dtype.lanes() * src_dtype.bits()) {
      return CodeGenC::VisitExpr_(op, os);
    }
    CHECK_EQ(tgt_dtype.lanes(), src_dtype.lanes())
        << "E2M1 float4 reinterpret expects source and target to have the same "
           "number of lanes. "
        << "Source dtype: " << src_dtype << ", Target dtype: " << tgt_dtype;
    CHECK_EQ(tgt_dtype.bytes(), src_dtype.bytes())
        << "E2M1 float4 reinterpret expects source and target to have the same "
           "number of bytes. "
        << "Source dtype: " << src_dtype << ", Target dtype: " << tgt_dtype;

    int lanes = tgt_dtype.lanes();

    int ssa_scope = BeginScope();
    if (lanes == 1) {
      // The case of lane=1 is same as the normal reinterpret,
      // except that we allow the src and dst dtype to have different number of
      // bits.
      std::string rhs = SSAGetID(PrintExpr(value), src_dtype);
      os << "(*(";
      this->PrintType(tgt_dtype, os);
      os << " *)(&(" << rhs << ")))";
    } else if (lanes == 2) {
      if (tgt_dtype.is_float4_e2m1fn()) {
        // We view the source as an uint16, and then extract bits of two fp4
        // numbers, and finally reinterpret the result as fp4x2.
        value =
            tir::Call(DataType::UInt(16), tir::builtin::reinterpret(), {value});
        tir::Var temp_var("temp_var", DataType::UInt(16));
        value =
            tir::Let(temp_var, value,
                     tir::Cast(DataType::UInt(8),
                               (temp_var & IntImm(DataType::UInt(16), 0xF)) |
                                   ((temp_var >> 4) &
                                    IntImm(DataType::UInt(16), 0xF0))));
      } else {
        value = tir::Cast(
            DataType::UInt(16),
            tir::Call(DataType::UInt(8), tir::builtin::reinterpret(), {value}));
        tir::Var temp_var("temp_var", DataType::UInt(16));
        value =
            tir::Let(temp_var, value,
                     (temp_var & IntImm(DataType::UInt(16), 0xF)) |
                         ((temp_var & IntImm(DataType::UInt(16), 0xF0)) << 4));
      }
      os << PrintExpr(
          tir::Call(tgt_dtype, tir::builtin::reinterpret(), {value}));
    } else if (lanes == 4) {
      if (tgt_dtype.is_float4_e2m1fn()) {
        // We view the source as an uint32, and then extract bits of four fp4
        // numbers, and finally reinterpret the result as fp4x4.
        value =
            tir::Call(DataType::UInt(32), tir::builtin::reinterpret(), {value});
        tir::Var temp_var("temp_var", DataType::UInt(32));
        value = tir::Let(
            temp_var, value,
            tir::Cast(
                DataType::UInt(16),
                (temp_var & IntImm(DataType::UInt(32), 0xF)) |
                    ((temp_var >> 4) & IntImm(DataType::UInt(32), 0xF0)) |
                    ((temp_var >> 8) & IntImm(DataType::UInt(32), 0xF00)) |
                    ((temp_var >> 12) & IntImm(DataType::UInt(32), 0xF000))));
      } else {
        value = tir::Cast(DataType::UInt(32),
                          tir::Call(DataType::UInt(16),
                                    tir::builtin::reinterpret(), {value}));
        tir::Var temp_var("temp_var", DataType::UInt(32));
        value = tir::Let(
            temp_var, value,
            (temp_var & IntImm(DataType::UInt(32), 0xF)) |
                ((temp_var & IntImm(DataType::UInt(32), 0xF0)) << 4) |
                ((temp_var & IntImm(DataType::UInt(32), 0xF00)) << 8) |
                ((temp_var & IntImm(DataType::UInt(32), 0xF000)) << 12));
      }
      os << PrintExpr(
          tir::Call(tgt_dtype, tir::builtin::reinterpret(), {value}));
    } else {
      LOG(FATAL) << "Invalid number of lanes for float4_e2m1fn reinterpret: "
                 << lanes;
    }
    EndScope(ssa_scope);
  } else if (op->op.same_as(builtin::thread_return())) {
    os << "return";
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
  } else if (op->op.same_as(tl::tl_gemm())) {
    ICHECK(op->args.size() == 4) << "tl_gemm expects 4 arguments <op_instance, "
                                    "A_ptr, B_ptr, C_ptr>, but got "
                                 << op->args.size();
    auto op_instance = Downcast<StringImm>(op->args[0]);
    this->PrintCallExtern(GetType(GetRef<PrimExpr>(op)), op_instance->value,
                          op->args, true, os);
  } else if (op->op.same_as(tl::tl_gemm_sp())) {
    ICHECK(op->args.size() == 5)
        << "tl_gemm_sp expects 5 arguments <op_instance, A_ptr, B_ptr, C_ptr, "
           "E_ptr>, but got "
        << op->args.size();
    auto op_instance = Downcast<StringImm>(op->args[0]);
    enable_sparse_gemm_ = true;
    this->PrintCallExtern(GetType(GetRef<PrimExpr>(op)), op_instance->value,
                          op->args, true, os);
1629
1630
  } else if (op->op.same_as(tl::tl_shuffle_elect())) {
    os << "tl::tl_shuffle_elect<" << PrintExpr(op->args[0]) << ">()";
1631
1632
1633
1634
1635
  } else {
    CodeGenC::VisitExpr_(op, os);
  }
}

1636
void CodeGenTileLangCUDA::VisitStmt_(const AttrStmtNode *op) {
1637
  if (op->attr_key == tir::attr::fragment_shape) {
1638
1639
    const VarNode *buffer = op->node.as<VarNode>();
    const StringImmNode *shape_str = op->value.as<StringImmNode>();
1640
1641
    fragment_shapes[buffer] = shape_str->value;
  } else if (op->attr_key == tir::attr::fragment_layout) {
1642
1643
    const VarNode *buffer = op->node.as<VarNode>();
    const StringImmNode *layout_str = op->value.as<StringImmNode>();
1644
1645
    fragment_layouts[buffer] = layout_str->value;
  } else if (op->attr_key == tir::attr::async_commit_queue_scope) {
1646
1647
1648
    const IntImmNode *queue_id = op->value.as<IntImmNode>();
    ICHECK(queue_id && queue_id->value == 0)
        << "For CUDA, the index of an async queue must be 0.";
1649
1650
1651
1652
1653
1654
1655
    this->VisitStmt(op->body);
    auto commit_group = Call(DataType::Void(), builtin::ptx_commit_group(), {});
    this->VisitExpr(commit_group, this->stream);
    return;
  } else if (op->attr_key == tir::attr::async_wait_queue_scope) {
    auto wait_attrs = GetAsyncWaitAttributes(op);
    auto queue_id = wait_attrs.first.as<IntImmNode>();
1656
1657
    ICHECK(queue_id && queue_id->value == 0)
        << "For CUDA, the index of an async queue must be 0.";
1658
    auto wait_cnt = wait_attrs.second;
1659
1660
    auto wait_group =
        Call(DataType::Void(), builtin::ptx_wait_group(), {wait_cnt});
1661
1662
1663
1664
1665
1666
1667
    this->VisitExpr(wait_group, this->stream);
    auto inner = op->body.as<AttrStmtNode>();
    ICHECK(inner);
    this->VisitStmt(inner->body);
    return;
  } else if (op->attr_key == "threadblock_swizzle_pattern") {
    this->PrintIndent();
1668
    const StringImmNode *pattern = op->value.as<StringImmNode>();
1669
1670
1671
1672
1673
1674
1675
1676
    ICHECK(pattern);
    this->stream << "const dim3 blockIdx = " << pattern->value << "();\n";
    this->VisitStmt(op->body);
    return;
  }
  CodeGenC::VisitStmt_(op);
}

1677
void CodeGenTileLangCUDA::VisitStmt_(const AllocateNode *op) {
1678
1679
1680
1681
  ICHECK(!is_zero(op->condition));
  std::string vid = AllocVarID(op->buffer_var.get());
  this->PrintIndent();
  std::string scope = GetPtrStorageScope(op->buffer_var);
1682
  const VarNode *buffer = op->buffer_var.as<VarNode>();
1683
1684
  if (scope.find("wmma.") == 0) {
    if (scope == "wmma.matrix_a" || scope == "wmma.matrix_b") {
1685
1686
1687
1688
      ICHECK(op->dtype == DataType::Float(16) ||
             op->dtype == DataType::Int(8) || op->dtype == DataType::UInt(8) ||
             op->dtype == DataType::Int(4) || op->dtype == DataType::UInt(4) ||
             op->dtype == DataType::Int(1) || op->dtype == DataType::BFloat(16))
1689
1690
1691
          << "Matrix_a and matrix_b only support half or char or unsigned char "
          << "or uint4 or int4 or int1 type for now";
    } else {
1692
1693
      ICHECK(op->dtype == DataType::Float(16) ||
             op->dtype == DataType::Float(32) || op->dtype == DataType::Int(32))
1694
1695
1696
          << "Accumulator only support half, float and int type for now";
    }
    PrintWmmaScope(scope, op->dtype, buffer, stream);
1697
  } else {
1698
1699
1700
1701
1702
1703
1704
1705
    PrintStorageScope(scope, stream);
    PrintType(op->dtype, stream);
  }

  if (scope == "shared.dyn") {
    stream << ' ' << vid << "[];\n";
  } else {
    size_t constant_size = op->ConstantAllocationSize();
1706
    ICHECK_GT(constant_size, 0)
1707
1708
        << "Can only handle constant size stack allocation for now, but get "
        << constant_size << " for " << op->buffer_var->name_hint;
1709
1710
1711
1712
1713
1714
1715
1716
    if (scope.find("wmma.") == 0) {
      constant_size = GetWmmaFragmentSize(scope, buffer, constant_size);
    }
    if ((op->dtype == DataType::Int(4) || op->dtype == DataType::UInt(4) ||
         op->dtype == DataType::Int(1)) &&
        scope == "shared") {
      constant_size = constant_size / (32 / op->dtype.bits());
    }
1717
1718
    if (scope == "shared") {
      stream << ' ' << vid << '[' << constant_size << "];\n";
1719
1720
1721
1722
1723
1724
    } else if (scope == "shared.barrier") {
      auto v_id_mem = vid + "_mem";
      stream << ' ' << v_id_mem << "[" << constant_size << "];\n";
      PrintIndent();
      stream << "auto " << vid << " = reinterpret_cast<" << mbarrier_dtype_
             << "*>(" << v_id_mem << ");\n";
1725
1726
1727
1728
1729
1730
1731
1732
    } else if (scope == "local") {
      stream << ' ' << vid << '[' << constant_size << "];\n";
    } else if (scope == "local.var") {
      stream << ' ' << vid << " = " << PrintExpr(tir::make_const(op->dtype, 0))
             << ";\n";
    } else {
      ICHECK(false) << "Unsupported scope: " << scope;
    }
1733
1734
1735
1736
1737
1738
  }

  RegisterHandleType(op->buffer_var.get(), op->dtype);
  this->PrintStmt(op->body);
}

1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
void CodeGenTileLangCUDA::VisitStmt_(const EvaluateNode *op) {
  if (is_const_int(op->value))
    return;
  const CallNode *call = op->value.as<CallNode>();
  if (call && call->op.same_as(builtin::tvm_global_barrier_kinit())) {
    PrintIndent();
    stream << "__shared__ unsigned " << vid_global_barrier_expect_ << ";\n";
    PrintIndent();
    stream << "if (threadIdx.x == 0) {\n";
    PrintIndent();
    stream << "  " << vid_global_barrier_expect_ << " = 0;\n";
    PrintIndent();
    stream << "}\n";
  } else {
    CodeGenC::VisitStmt_(op);
  }
}

1757
void CodeGenTileLangCUDA::VisitExpr_(const RampNode *op, std::ostream &os) {
1758
  int lanes = static_cast<int>(Downcast<IntImm>(op->lanes)->value);
1759
1760
  CHECK_LE(lanes, 4) << "Translate Ramp Node " << GetRef<Ramp>(op) << " with "
                     << lanes << " lanes is not allowed.";
1761
1762
1763
1764
1765
1766
  os << "(make_";
  PrintType(op->dtype, os);
  os << "(";
  for (int i = 0; i < lanes; i++) {
    os << "(" << PrintExpr(op->base) << ")"
       << "+(" << PrintExpr(op->stride) << "*" << i << ")";
1767
1768
    if (i != lanes - 1)
      os << ", ";
1769
1770
1771
1772
  }
  os << "))";
}

1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
void CodeGenTileLangCUDA::VisitExpr_(const BufferLoadNode *op,
                                     std::ostream &os) { // NOLINT(*)
  ICHECK_EQ(op->indices.size(), 1)
      << "Load from non-flat memory not supported.";
  ICHECK(!op->predicate.defined())
      << "Predicated buffer load is not supported.";

  DataType value_dtype = op->dtype;
  PrimExpr index = op->indices[0];
  Var buffer_var = op->buffer->data;
  DataType element_dtype = op->buffer->dtype;

  int lanes = op->dtype.lanes();
  // delcare type.
  if (value_dtype.lanes() == element_dtype.lanes()) {
    std::string ref = GetBufferRef(op->dtype, op->buffer.get(), index);
    HandleVolatileLoads(ref, op, os);
  } else {
    bool can_vector_load = false;
    arith::PVar<PrimExpr> base;
    if (arith::ramp(base, 1, op->dtype.lanes()).Match(index)) {
      const RampNode *ramp = index.as<RampNode>();
      ICHECK(ramp);
      can_vector_load = true;
      // arith::ModularSet me = arith::Analyzer().modular_set(ramp->base);
      // The condition: {k * coeff + base} divisible by the alignment for any k
      // if (me->coeff % op->dtype.lanes() == 0 && me->base % op->dtype.lanes()
      // == 0) {
      //   can_vector_load = true;
      // }
    }

    if (value_dtype.is_float4_e2m1fn() && lanes != 1) {
      // A float4_e2m1fn element has 4 bits, which is an incomplete byte.
      // So we cannot vector load it.
      can_vector_load = false;
    }
    if (can_vector_load) {
      std::string ref = GetVecLoad(op->dtype, op->buffer.get(), base.Eval());
      HandleVolatileLoads(ref, op, os);
    } else {
      std::ostringstream svalue_expr;
      std::string sindex = SSAGetID(PrintExpr(index), index.dtype());
      std::string vid = GetVarID(buffer_var.get());
      DataType elem_type = op->dtype.element_of();
      for (int i = 0; i < lanes; ++i) {
        std::ostringstream value_temp;
        if (!HandleTypeMatch(buffer_var.get(), elem_type)) {
          value_temp << "((";
          if (buffer_var.get()->dtype.is_handle()) {
            auto it = alloc_storage_scope_.find(buffer_var.get());
            if (it != alloc_storage_scope_.end()) {
              PrintStorageScope(it->second, value_temp);
            }
          }
          PrintType(elem_type, value_temp);
          value_temp << "*)" << vid << ')';
        } else {
          value_temp << vid;
        }
        value_temp << '[';
        PrintVecElemLoad(sindex, index.dtype(), i, value_temp);
        value_temp << ']';
        PrintVecElemLoadExpr(op->dtype, i, value_temp.str(), svalue_expr);
      }
      os << svalue_expr.str();
    }
  }
}

1843
1844
void CodeGenTileLangCUDA::VisitExpr_(const BroadcastNode *op,
                                     std::ostream &os) { // NOLINT(*)
1845
  int lanes = static_cast<int>(Downcast<IntImm>(op->lanes)->value);
1846
1847
  if ((op->dtype.is_int() || op->dtype.is_uint()) && op->dtype.bits() == 8 &&
      lanes == 4) {
1848
    // make_int8x4
1849
    const int64_t *p = as_const_int(op->value);
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
    ICHECK(p);
    int64_t v = *p & 0xFF;
    v = (v << 24) | (v << 16) | (v << 8) | v;
    if (op->dtype.is_uint()) {
      os << "(uint)" << v;
    } else {
      os << "(int)" << v;
    }
    return;
  }

  if (op->dtype.is_float16()) {
    std::string v = PrintExpr(op->value);
    os << "make_";
    PrintType(op->dtype, os);
    os << '(';
    for (int i = 0; i < lanes / 2; ++i) {
1867
1868
      if (i != 0)
        os << ", ";
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
      os << "__pack_half2(" << v << ", " << v << ")";
    }
    os << ')';
    return;
  }

  if (op->dtype.is_bfloat16()) {
    std::string v = PrintExpr(op->value);
    os << "make_";
    PrintType(op->dtype, os);
    os << '(';
    for (int i = 0; i < lanes / 2; ++i) {
1881
1882
      if (i != 0)
        os << ", ";
1883
1884
1885
1886
1887
1888
      os << "__pack_nv_bfloat162(" << v << ", " << v << ")";
    }
    os << ')';
    return;
  }

1889
1890
  if (op->dtype.is_float() && op->dtype.bits() == 32 &&
      op->dtype.lanes() == 8) {
1891
1892
1893
    std::string v = PrintExpr(op->value);
    os << "make_ulonglong4(";
    for (int i = 0; i < 4; ++i) {
1894
1895
      if (i != 0)
        os << ", ";
1896
1897
1898
1899
1900
1901
1902
1903
      os << "*(unsigned long long*)&make_float2(" << v << ", " << v << ")";
    }
    os << ')';
    return;
  }

  if ((op->dtype.is_int() || op->dtype.is_uint()) && op->dtype.bits() == 4) {
    bool fail = false;
1904
    const int64_t *p = as_const_int(op->value);
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
    ICHECK(p);
    int64_t v = *p & 0xF;

    if (lanes == 4) {
      v = (v << 12) | (v << 8) | (v << 4) | v;
      if (op->dtype.is_uint()) {
        os << "(uint16_t)" << v;
      } else {
        os << "(int16_t)" << v;
      }
    } else {
1916
1917
      v = (v << 28) | (v << 24) | (v << 20) | (v << 16) | (v << 12) | (v << 8) |
          (v << 4) | v;
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
      if (lanes == 8) {
        if (op->dtype.is_uint()) {
          os << "(uint)" << v;
        } else {
          os << "(int)" << v;
        }
      } else if (lanes == 16 || lanes == 32) {
        os << "make_";
        PrintType(op->dtype, os);
        os << '(';
        for (int i = 0; i < lanes / 8; ++i) {
1929
1930
          if (i != 0)
            os << ", ";
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
          if (op->dtype.is_uint()) {
            os << "(uint)" << v;
          } else {
            os << "(int)" << v;
          }
        }
        os << ')';
      } else {
        fail = true;
      }
    }

    if (!fail) {
      return;
    }
  }

  std::string v = PrintExpr(op->value);
  os << "make_";
  PrintType(op->dtype, os);
  os << '(';
  for (int i = 0; i < lanes; ++i) {
1953
1954
    if (i != 0)
      os << ", ";
1955
1956
1957
1958
1959
    os << v;
  }
  os << ')';
}

1960
1961
inline void PrintConst(const FloatImmNode *op, std::ostream &os,
                       CodeGenTileLangCUDA *p) { // NOLINT(*)
1962
1963
1964
  // Type code is kBFloat
  if (op->dtype.is_bfloat16()) {
    os << "bfloat16_t";
1965
1966
1967
    os << '(' << std::hexfloat << op->value << 'f';
    os << "/*" << std::scientific << op->value << "*/";
    os << ')';
1968
1969
    return;
  }
1970
1971
1972
  // Type code is kFloat8_e5m2 or kE4M4Float
  if (op->dtype.is_float8() || op->dtype.is_float4()) {
    p->PrintType(op->dtype, os);
1973
1974
1975
    os << '(' << std::hexfloat << op->value << 'f';
    os << "/*" << std::scientific << op->value << "*/";
    os << ')';
1976
1977
    return;
  }
1978
1979
  // Type code is kFloat
  switch (op->dtype.bits()) {
1980
1981
1982
1983
1984
1985
  case 64:
  case 32: {
    std::ostringstream temp;
    if (std::isinf(op->value)) {
      if (op->value < 0) {
        temp << "-";
1986
      }
1987
      temp << ((op->dtype.bits() == 32) ? "CUDART_INF_F" : "CUDART_INF");
1988
      p->need_math_constants_h_ = true;
1989
1990
    } else if (std::isnan(op->value)) {
      temp << ((op->dtype.bits() == 32) ? "CUDART_NAN_F" : "CUDART_NAN");
1991
      p->need_math_constants_h_ = true;
1992
    } else {
1993
      temp << std::hexfloat << op->value;
1994
1995
      if (op->dtype.bits() == 32)
        temp << 'f';
1996
      temp << "/*" << std::scientific << op->value << "*/";
1997
    }
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
    p->MarkConst(temp.str());
    os << temp.str();
    break;
  }
  case 16: {
    os << "half_t" << '(';
    FloatImm const_f32 = FloatImm(DataType::Float(32), op->value);
    PrintConst(const_f32.get(), os, p);
    os << ')';
    break;
  }
  default:
    LOG(FATAL) << "Bad bit-width for float: " << op->dtype << "\n";
2011
2012
2013
  }
}

2014
2015
void CodeGenTileLangCUDA::VisitExpr_(const FloatImmNode *op,
                                     std::ostream &os) { // NOLINT(*)
2016
2017
2018
  PrintConst(op, os, this);
}

2019
2020
2021
void CodeGenTileLangCUDA::PrintWmmaScope(const std::string &scope, DataType t,
                                         const VarNode *variable,
                                         std::ostream &os) {
2022
2023
  std::stringstream type;
  PrintType(t, type);
2024
2025
  ICHECK(fragment_shapes.count(variable))
      << "Cannot find shape of the wmma fragment " << variable->name_hint;
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
  std::string shape_str = fragment_shapes.at(variable);
  if ((t.is_int() || t.is_uint()) && t.bits() < 8 && t.lanes() == 1) {
    type.str(std::string());
    if (t.is_int()) {
      if (t.bits() == 4) {
        type << "nvcuda::wmma::experimental::precision::s4";
      } else if (t.bits() == 1) {
        type << "nvcuda::wmma::experimental::precision::b1";
      } else {
        LOG(FATAL) << "Unhandled integer type for wmma fragment!";
      }
    } else if (t.is_uint()) {
      if (t.bits() == 4) {
        type << "nvcuda::wmma::experimental::precision::u4";
      } else {
        LOG(FATAL) << "Unhandled integer type for wmma fragment!";
      }
    }
  }
  if (scope == "wmma.matrix_a") {
    std::string layout_str = fragment_layouts[variable];
    ICHECK_NE(layout_str, "") << "Layout must be defined for matrix_a";
2048
2049
    os << "nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, " << shape_str << ", "
       << type.str() << ", nvcuda::wmma::" << layout_str << ">";
2050
2051
2052
  } else if (scope == "wmma.matrix_b") {
    std::string layout_str = fragment_layouts[variable];
    ICHECK_NE(layout_str, "") << "Layout must be defined for matrix_b";
2053
2054
    os << "nvcuda::wmma::fragment<nvcuda::wmma::matrix_b, " << shape_str << ", "
       << type.str() << ", nvcuda::wmma::" << layout_str << ">";
2055
  } else if (scope == "wmma.accumulator") {
2056
2057
    os << "nvcuda::wmma::fragment<nvcuda::wmma::accumulator, " << shape_str
       << ", " << type.str() << ">";
2058
2059
2060
  }
}

2061
2062
int32_t CodeGenTileLangCUDA::GetWmmaFragmentSize(const std::string &scope,
                                                 const VarNode *variable,
2063
                                                 int32_t size) {
2064
2065
  ICHECK(fragment_shapes.count(variable))
      << "Cannot find shape of the wmma fragment " << variable->name_hint;
2066
2067
2068
2069
2070
2071
2072
2073
  std::string shape_str = fragment_shapes.at(variable);
  std::pair<int32_t, int32_t> dim = GetWmmaFragmentDimSize(shape_str, scope);
  if (dim.first * dim.second != 0)
    return size / dim.first / dim.second;
  else
    return 0;
}

2074
2075
2076
void CodeGenTileLangCUDA::HandleVolatileLoads(const std::string &value,
                                              const BufferLoadNode *op,
                                              std::ostream &os) {
2077
2078
2079
  // Cast away volatile qualifier for fp16 types. That is, only loads and
  // stores are volatile. The loaded objects are not marked as volatile.
  //
2080
2081
  if ((op->dtype.is_float16() || op->dtype.is_bfloat16()) &&
      IsVolatile(op->buffer->data.get())) {
2082
2083
2084
2085
2086
2087
2088
2089
    os << "(";
    PrintType(op->dtype, os);
    os << ")(" << value << ")";
  } else {
    os << value;
  }
}

2090
2091
2092
void CodeGenTileLangCUDA::PrintVecElemLoadExpr(DataType t, int i,
                                               const std::string &value,
                                               std::ostream &os) {
2093
2094
2095
2096
2097
2098
  ICHECK_GT(t.lanes(), 1);
  if (t.bits() == 8 && (t.is_int() || t.is_uint())) {
    if (!(t.lanes() == 2 || t.lanes() == 3)) {
      if (i != 0) {
        os << "|";
      }
2099
2100
      os << "((0x000000ff << " << i * 8 << ") & (" << value << " << " << i * 8
         << "))";
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
      return;
    }
  }

  if (t.is_float16()) {
    if (i == 0) {
      os << "make_";
      PrintType(t, os);
      os << '(';
    }
    if (i % 2 == 0) {
      os << "__pack_half2(" << value;
    } else {
      os << "," << value << ")";
      if (i != t.lanes() - 1) {
        os << ",";
      } else {
        os << ")";
      }
    }
    return;
  }

  if (t.is_bfloat16()) {
    if (i == 0) {
      os << "make_";
      PrintType(t, os);
      os << '(';
    }
    if (i % 2 == 0) {
      os << "__pack_bfloat162(" << value;
    } else {
      os << "," << value << ")";
      if (i != t.lanes() - 1) {
        os << ",";
      } else {
        os << ")";
      }
    }
    return;
  }

  if (i == 0) {
    os << "make_";
    PrintType(t, os);
    os << "(";
  }
  os << value;
  if (i != t.lanes() - 1) {
    os << ",";
  } else {
    os << ")";
  }
  return;
}

2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
void CodeGenTileLangCUDA::PrintFunctionSignature(const String &function_name,
                                                 const PrimFunc &func,
                                                 std::ostream &os) {
  PrintFuncPrefix(os);
  CodeGenC::PrintType(func->ret_type, os);
  CodeGenC::PrintExtraAttrs(func, os);
  bool no_alias = func->HasNonzeroAttr(tir::attr::kNoAlias);
  os << " " << function_name << "(";
  for (size_t i = 0; i < func->params.size(); ++i) {
    tir::Var v = func->params[i];
    std::string vid = AllocVarID(v.get());

    if (i > 0) {
      os << ", ";
    }

    if (v.dtype().is_handle()) {
      // work around for grid constant parameters.
      if (auto *ptr = v->type_annotation.as<PointerTypeNode>()) {
        if (ptr->storage_scope == "grid_constant") {
          os << "__grid_constant__ const ";
          CodeGenC::PrintType(ptr->element_type, os);
          os << ' ' << vid;
          continue;
        }
      }

      auto it = alloc_storage_scope_.find(v.get());
      if (it != alloc_storage_scope_.end()) {
        PrintStorageScope(it->second, os);
      }

      CodeGenC::PrintType(GetType(v), os);
      if (auto *ptr = v->type_annotation.as<PointerTypeNode>()) {
        if (auto *prim = ptr->element_type.as<PrimTypeNode>()) {
          RegisterHandleType(v.get(), prim->dtype);
        }
      }

      if (no_alias) {
        PrintRestrict(v, os);
      }
    } else {
      CodeGenC::PrintType(GetType(v), os);
    }
    os << ' ' << vid;
  }
  os << ")";

  // Register handle data type
  // TODO(tvm-team): consider simply keep type info in the
  // type annotation(via a normalizing rewriting).
  for (const auto &param : func->params) {
    if (auto *ptr = param->type_annotation.as<PointerTypeNode>()) {
      if (auto *prim = ptr->element_type.as<PrimTypeNode>()) {
        RegisterHandleType(param.get(), prim->dtype);
      }
    }
  }
}

void CodeGenTileLangCUDA::AddFunction(const GlobalVar &gvar,
                                      const PrimFunc &f) {
  // If the function has already been forward-declared, this is a
  // no-op.
  CodeGenC::DeclareFunction(gvar, f);
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
  // clear previous generated state.
  this->InitFuncState(f);
  // reserve keywords
  ReserveKeywordsAsUnique();

  auto global_symbol = f->GetAttr<String>(tvm::attr::kGlobalSymbol);
  ICHECK(global_symbol.defined())
      << "CodeGenC: Expect PrimFunc to have the global_symbol attribute";
  bool no_alias = f->HasNonzeroAttr(tir::attr::kNoAlias);

  this->PrintFuncPrefix(stream);
  CodeGenC::PrintType(f->ret_type, stream);
2235
2236
  this->PrintExtraAttrs(f);

2237
2238
2239
2240
2241
  this->stream << " " << static_cast<std::string>(global_symbol.value()) << "(";

  for (size_t i = 0; i < f->params.size(); ++i) {
    tir::Var v = f->params[i];
    std::string vid = AllocVarID(v.get());
2242
2243
    if (i != 0)
      stream << ", ";
2244
2245
    if (v.dtype().is_handle()) {
      // work around for grid constant parameters.
2246
      if (auto *ptr = v->type_annotation.as<PointerTypeNode>()) {
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
        if (ptr->storage_scope == "grid_constant") {
          stream << "__grid_constant__ const ";
          CodeGenC::PrintType(ptr->element_type, stream);
          stream << ' ' << vid;
          continue;
        }
      }

      auto it = alloc_storage_scope_.find(v.get());
      if (it != alloc_storage_scope_.end()) {
        PrintStorageScope(it->second, stream);
      }

      CodeGenC::PrintType(GetType(v), stream);
2261
2262
      if (auto *ptr = v->type_annotation.as<PointerTypeNode>()) {
        if (auto *prim = ptr->element_type.as<PrimTypeNode>()) {
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
          RegisterHandleType(v.get(), prim->dtype);
        }
      }

      if (no_alias) {
        PrintRestrict(v, stream);
      }
    } else {
      CodeGenC::PrintType(GetType(v), stream);
    }
    stream << ' ' << vid;
  }
  stream << ") {\n";
  this->PreFunctionBody(f);
  int func_scope = this->BeginScope();
  this->PrintStmt(f->body);
  this->EndScope(func_scope);
  this->PrintIndent();
  this->stream << "}\n\n";
}

2284
2285
} // namespace codegen
} // namespace tvm