layout_inference.cc 27.5 KB
Newer Older
1
2
3
4
5
/*!
 * \file layout_inference.cc
 * \brief infer the fragment/shared memory layout
 */

6
#include <tvm/ffi/reflection/registry.h>
7
#include <tvm/tir/builtin.h>
8
#include <tvm/tir/index_map.h>
9
10
11
12
13
14
15
#include <tvm/tir/op.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>
#include <tvm/tir/utils.h>

#include <queue>

16
#include "../layout/utils.h"
17
#include "../op/parallel.h"
18
#include "../op/region.h"
19
#include "arith/ir_mutator_with_analyzer.h"
20
#include "arith/ir_visitor_with_analyzer.h"
21
#include "common/loop_fusion_utils.h"
22
#include "common/loop_parallel_transform_utils.h"
23
#include "common/union_find.h"
24
#include "layout_reducer.h"
25
26
#include "loop_partition.h"
#include "loop_vectorize.h"
27
28
#include "runtime/thread_storage_scope.h"
#include "tir/transforms/ir_utils.h"
29
30
31
32

namespace tvm {
namespace tl {

33
34
35
using namespace tir;

/*!
36
 * \brief collect the mapping from the buffer var to it allocated buffer
37
 */
38
class ThreadBindingCollector : public StmtExprVisitor {
39
40
public:
  void VisitStmt_(const AttrStmtNode *op) final {
41
42
43
44
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      thread_binding_[iv->var.get()] = iv;
    }
45
46
47
    StmtExprVisitor::VisitStmt_(op);
  }

48
49
  // The thread binding map
  std::unordered_map<const VarNode *, IterVar> thread_binding_;
50
51
};

52
53
using namespace tir;
using arith::IRMutatorWithAnalyzer;
54
using arith::IRVisitorWithAnalyzer;
55
56
57
58
59
60
61

struct LayoutInferenceResult {
  Map<Buffer, Layout> layout_map;
  Map<For, Fragment> for_map;
  Map<For, PrimExpr> predicate_map;
};

62
class BufferUseDefCollector : public IRVisitorWithAnalyzer {
63
public:
64
65
  BufferUseDefCollector(bool skip_thread_partition)
      : skip_thread_partition_(skip_thread_partition) {}
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
  void RunInferStep(int cur_infer_id, InferLevel level, bool update_queue,
                    LayoutMap &layout_map, const LayoutMap &strict_layout_map,
                    std::queue<int> &q, std::vector<bool> &in_queue) {
    auto num_infer = infer_list_.size();

    // Range check for cur_infer_id
    ICHECK_GE(cur_infer_id, 0) << "cur_infer_id is negative, which is invalid.";
    ICHECK_LT(cur_infer_id, num_infer)
        << "cur_infer_id " << cur_infer_id << " is out of range, must be < "
        << num_infer << ".";

    // Make sure we can safely access infer_list_[cur_infer_id] and
    // thread_var_vec_[cur_infer_id]
    auto &next = infer_list_[cur_infer_id];
    auto iter_var = thread_var_vec_[cur_infer_id];
    auto thread_bounds = thread_bounds_vec_[cur_infer_id];
    // Double-check that 'next' is valid
84
85
    ICHECK(next.defined()) << "infer_list_[" << cur_infer_id
                           << "] is null inside run_infer_step.";
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

    // Check iter_var->dom and dom->extent
    ICHECK(iter_var.defined())
        << "thread_var_vec_[" << cur_infer_id << "] is not defined.";
    ICHECK(iter_var->dom.defined())
        << "iter_var->dom is not defined for infer_list_[" << cur_infer_id
        << "].";
    ICHECK(iter_var->dom->extent.defined())
        << "iter_var->dom->extent is not defined for infer_list_["
        << cur_infer_id << "].";

    const int64_t *extent_ptr = as_const_int(iter_var->dom->extent);
    ICHECK(extent_ptr != nullptr)
        << "iter_var->dom->extent is not a constant integer, which is "
           "required for layout inference.";

    // Run InferLayout
    auto updates = next->InferLayout(
        LayoutInferArgs{target_, thread_bounds, layout_map}, level);
105

106
107
108
109
110
111
112
113
114
115
116
117
    // Process the returned updates
    for (const auto &[buffer, layout] : updates) {
      // Basic validity checks
      ICHECK(buffer.defined()) << "InferLayout returned an undefined buffer.";
      ICHECK(layout.defined()) << "InferLayout returned an undefined layout.";

      if (layout_map.count(buffer)) {
        // If new layout contains the old one, update map
        if (buffer.scope() == "local.fragment" &&
            level != InferLevel::kStrict && !strict_layout_map.count(buffer)) {
          // Actually this test has been done in ParallelOp::InferLayout
          // already. Just do it again to avoid missing implementations in other
118
          // `TileOperator`s.
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
          auto dst_layout = layout.as<Fragment>().value();
          auto src_layout = layout_map[buffer].as<Fragment>().value();
          ICHECK(dst_layout->InputDim() == src_layout->InputDim());
          Array<PrimExpr> indices;
          indices.reserve(dst_layout->InputDim());
          arith::Analyzer inner_analyzer;
          for (int i = 0; i < dst_layout->InputDim(); ++i) {
            auto x = InputPlaceholder(i);
            indices.push_back(x);
            // should be literal - literal = 0, any analyzer will work
            ICHECK(is_zero(inner_analyzer.Simplify(
                dst_layout->InputShape()[i] - src_layout->InputShape()[i])));
            inner_analyzer.Bind(x, Range(0, dst_layout->InputShape()[i]));
          }
          if (ProveFragmentContains(src_layout, dst_layout, indices, indices,
                                    inner_analyzer)) {
            layout_map.Set(buffer, layout);
            continue;
          }
        }
        // If already in map, ensure they are structurally equal
        ICHECK(StructuralEqual()(layout, layout_map[buffer]))
            << "Get different layout for " << buffer
            << "\n current layout: " << layout->DebugOutput()
            << "\n previous layout: " << layout_map[buffer]->DebugOutput();
      } else {
        // Otherwise, update map
        layout_map.Set(buffer, layout);
        if (!update_queue)
          continue;

        // Check if buffer exists in use_list_
        if (!use_list_.count(buffer)) {
          LOG(WARNING) << "Layout inference failed for buffer " << buffer
                       << ". "
                       << "The buffer cannot be inferred with current layout "
                          "inference rules.";
          continue;
        }

        // Push back into BFS queue
        for (int idx : use_list_[buffer]) {
          ICHECK_GE(idx, 0)
              << "Index in use_list_ for buffer " << buffer << " is negative.";
          ICHECK_LT(idx, num_infer)
              << "Index in use_list_ for buffer " << buffer
              << " out of range: " << idx << " >= " << num_infer << ".";

          if (!in_queue[idx] && idx != cur_infer_id) {
            in_queue[idx] = true;
            q.push(idx);
          }
        }
      }
    }
  };

  void FinishInferQueue(InferLevel level, LayoutMap &layout_map,
                        const LayoutMap &strict_layout_map, std::queue<int> &q,
                        std::vector<bool> &in_queue) {
    auto num_infer = infer_list_.size();
    while (!q.empty()) {
      int cur_infer_id = q.front();
      q.pop();
      // Range check again, just to be safe
      ICHECK_GE(cur_infer_id, 0);
      ICHECK_LT(cur_infer_id, num_infer);

      in_queue[cur_infer_id] = false;
      RunInferStep(cur_infer_id, level, true, layout_map, strict_layout_map, q,
                   in_queue);
    }
  };

193
  LayoutInferenceResult Run() {
194
195
196
197
198
    // Basic consistency check: infer_list_ and thread_var_vec_ should have the
    // same size
    ICHECK_EQ(infer_list_.size(), thread_var_vec_.size())
        << "Size mismatch: infer_list_ and thread_var_vec_ must match in "
           "length.";
199
200
201
    ICHECK_EQ(thread_bounds_vec_.size(), infer_list_.size())
        << "Size mismatch: thread_bounds_vec_ and infer_list_ must match in "
           "length.";
202
203
204
205
206

    // If needed, you can also check that annotated_layout_map_ is not empty, or
    // anything else relevant to your setup.

    // Copy the annotated layout map to local variable
207
    Map<Buffer, Layout> layout_map = annotated_layout_map_;
208
    Map<Buffer, Layout> strict_layout_map;
209
210
    int num_infer = infer_list_.size();

211
    // Prepare BFS queue for iterative inference
212
213
    std::queue<int> q;
    std::vector<bool> in_queue(num_infer, true);
214
215
    for (int i = 0; i < num_infer; i++) {
      // Check that each infer_list_ entry is valid
216
      ICHECK(infer_list_[i].defined())
217
218
219
220
221
222
223
          << "infer_list_[" << i
          << "] is null. The inference object is not allocated properly.";

      // Check that each thread_var_vec_ entry is defined
      if (!thread_var_vec_[i].defined() && skip_thread_partition_) {
        thread_var_vec_[i] = thread_var_;
      }
224
      q.push(i);
225
    }
226

227
    // step 1: infer strict layout
228
    for (int i = 0; i < num_infer; i++) {
229
230
      RunInferStep(i, InferLevel::kStrict, false, layout_map, strict_layout_map,
                   q, in_queue);
231
232
    }

233
234
235
236
    for (const auto &[buffer, layout] : layout_map) {
      strict_layout_map.Set(buffer, layout);
    }

237
    // step 2: infer common layout with BFS
238
239
    FinishInferQueue(InferLevel::kCommon, layout_map, strict_layout_map, q,
                     in_queue);
240

241
    // step 3: relax constraints to free and re-run
242
243
    InferInFreeMode(layout_map, strict_layout_map);

244
    // Check that all local.fragment buffers have inferred layouts
245
    for (const auto &[buffer, _] : use_list_) {
246
247
248
249
250
      if (buffer.scope() == "local.fragment") {
        ICHECK_NE(layout_map.count(buffer), 0)
            << "The layout for fragment " << buffer
            << " can not be inferred correctly.";
      }
251
252
    }

253
    // Collect layout info for For nodes
254
255
    Map<For, Fragment> for_map;
    Map<For, PrimExpr> predicate_map;
256
257
258
    ICHECK(infer_list_.size() == thread_var_vec_.size())
        << "infer_list_ and thread_var_vec_ size mismatch";
    for (int i = 0; i < infer_list_.size(); i++) {
259
      TileOperator base_infer = std::move(infer_list_[i]);
260
261
      auto thread_var = thread_var_vec_[i];

262
      // Check if base_infer is valid
263
264
265
      ICHECK(base_infer.defined()) << "Null pointer encountered in "
                                      "infer_list_ while collecting for_map.";
      if (auto for_infer = base_infer.as<ParallelOpNode>()) {
266
        // Check that the loop layout is defined
267
        ICHECK(for_infer->GetLoopLayout().defined())
268
            << "The Layout for Parallel for cannot be inferred correctly:\n"
269
270
            << for_infer->GetRoot();
        for_map.Set(for_infer->GetRoot(), for_infer->GetLoopLayout());
271
        // thread_var_ should be defined if we rely on it
272
273
        ICHECK(thread_var.defined())
            << "thread_var is not defined. Cannot retrieve predicate.";
274

275
        if (auto predicate = for_infer->GetPredicate(thread_var->var)) {
276
          predicate_map.Set(for_infer->GetRoot(), predicate.value());
277
        }
278
279
280
281
282
283
      }
    }

    return {layout_map, for_map, predicate_map};
  }

284
285
  void Collect(const PrimFunc &f) {
    for (const auto &[_, buffer] : f->buffer_map) {
286
287
288
      buffer_data_to_buffer_.Set(buffer->data, buffer);
    }
    auto target = f->GetAttr<Target>(tvm::attr::kTarget);
289
290
    ICHECK(target.defined())
        << "Layout_Inference: Require the target attribute";
291
292
293
294
    target_ = target.value();
    this->operator()(f->body);
  }

295
296
private:
  void VisitExpr_(const CallNode *op) final {
297
    IRVisitorWithAnalyzer::VisitExpr_(op);
298
    // Do not analysis the call node to the global function.
299
300
    if (op->op.as<GlobalVarNode>())
      return;
301
302

    auto p = ParseOperator(GetRef<Call>(op), buffer_data_to_buffer_);
303
    if (p.defined()) {
304
      for (const auto &arg : op->args) {
305
306
307
308
        if (auto buffer = getBufferFromAccessPtr(arg)) {
          addToUseList(buffer.value());
        }
      }
309
      infer_list_stmt_.push_back(GetRef<ObjectRef>(op));
310
311
      infer_list_.push_back(std::move(p));
      thread_var_vec_.push_back(thread_var_);
312
313
314
315
      if (analyzer_.const_int_bound.IsBound(thread_var_->var)) {
        auto const_int_bound = analyzer_.const_int_bound(thread_var_);
        auto min_value = const_int_bound->min_value;
        auto max_value = const_int_bound->max_value;
316
        auto extent = max_value - min_value + 1;
317
318
        auto dtype = thread_var_->var.dtype();
        thread_bounds_vec_.push_back(Range::FromMinExtent(
319
            IntImm(dtype, min_value), IntImm(dtype, extent)));
320
321
322
      } else {
        thread_bounds_vec_.push_back(Range::FromMinExtent(0, 1));
      }
323
324
325
    }
  }

326
  Optional<Buffer> getBufferFromAccessPtr(const PrimExpr &expr) {
327
    auto call = expr.as<CallNode>();
328
329
330
331
    if (!call) {
      return std::nullopt;
    }
    if (call->op.same_as(builtin::tvm_access_ptr())) {
332
333
      auto var = call->args[1].as<Var>().value();
      return buffer_data_to_buffer_[var];
334
335
    } else if (call->op.same_as(RegionOp::Get())) {
      return call->args[0].as<BufferLoadNode>()->buffer;
336
    }
337
    return std::nullopt;
338
339
  }

340
  void addToUseList(const Buffer &buffer) {
341
342
343
344
345
346
347
    int infer_idx = infer_list_.size();
    if (use_list_.find(buffer) == use_list_.end()) {
      use_list_[buffer] = {};
    }
    use_list_[buffer].push_back(infer_idx);
  }

348
  void VisitStmt_(const ForNode *op) final {
349
    if (op->kind == ForKind::kParallel) {
350
      auto infer = ParallelOp(GetRef<For>(op));
351
      for (const auto &[buffer, _] : infer->GetIndiceMap()) {
352
353
        addToUseList(buffer);
      }
354
      infer_list_stmt_.push_back(GetRef<ObjectRef>(op));
355
356
      infer_list_.push_back(std::move(infer));
      thread_var_vec_.push_back(thread_var_);
357
358
359
360
      if (thread_var_.defined() &&
          analyzer_.const_int_bound.IsBound(thread_var_->var)) {
        auto const_int_bound = analyzer_.const_int_bound(thread_var_);
        auto dtype = thread_var_->var.dtype();
361
362
        auto extent =
            const_int_bound->max_value - const_int_bound->min_value + 1;
363
        thread_bounds_vec_.push_back(Range::FromMinExtent(
364
            IntImm(dtype, const_int_bound->min_value), IntImm(dtype, extent)));
365
366
367
      } else {
        thread_bounds_vec_.push_back(Range::FromMinExtent(0, 1));
      }
368
    } else {
369
      IRVisitorWithAnalyzer::VisitStmt(op->body);
370
371
372
    }
  }

373
  void VisitStmt_(const BlockNode *op) final {
374
375
376
377
    for (auto buffer : op->alloc_buffers) {
      buffer_data_to_buffer_.Set(buffer->data, buffer);
    }
    if (op->annotations.count(attr::kLayoutMap)) {
378
      // Check if the layout map is Map<Var, Layout>
379
380
381
      auto map =
          op->annotations.Get(attr::kLayoutMap)->as<Map<Var, Layout>>().value();
      for (const auto &[var, layout] : map) {
382
383
        ICHECK(buffer_data_to_buffer_.count(var))
            << "buffer " << var << " is not found in the block";
384
385
386
387
388
        auto buffer = buffer_data_to_buffer_[var];
        ICHECK(StructuralEqual()(layout->InputShape(), buffer->shape));
        annotated_layout_map_.Set(buffer, layout);
      }
    }
389
    IRVisitorWithAnalyzer::VisitStmt_(op);
390
391
  }

392
  void VisitStmt_(const AttrStmtNode *op) final {
393
394
395
396
397
398
399
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      if (iv->thread_tag == "threadIdx.x") {
        ICHECK(iv->dom->extent.as<IntImmNode>());
        thread_var_ = iv;
      }
    }
400
    IRVisitorWithAnalyzer::VisitStmt_(op);
401
402
403
  }

  Map<Var, Buffer> buffer_data_to_buffer_;
404
  std::vector<ObjectRef> infer_list_stmt_;
405
  std::vector<TileOperator> infer_list_;
406
407
  std::unordered_map<Buffer, std::vector<int>, ObjectPtrHash, ObjectPtrEqual>
      use_list_;
408
409
410
411
  // This is a workaround for cpu backend,
  // we need to define a thread_var for the serial loop.
  IterVar thread_var_ = IterVar(Range::FromMinExtent(0, 1), Var("v_thread"),
                                IterVarType::kDataPar);
412
  std::vector<IterVar> thread_var_vec_;
413
  std::vector<Range> thread_bounds_vec_;
414
415
  Target target_;
  LayoutMap annotated_layout_map_;
416
  bool skip_thread_partition_{false};
417

418
419
  std::vector<TileOperator> BackupInferList() {
    std::vector<TileOperator> back_infer_list;
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
    back_infer_list.reserve(infer_list_.size());
    for (auto &&p : infer_list_) {
      back_infer_list.push_back(p->Clone());
    }
    return back_infer_list;
  }

  void InferInFreeMode(LayoutMap &layout_map,
                       const LayoutMap &strict_layout_map) {
    // Group operators into connected components
    UnionFind<int> uf;
    for (int i = 0; i < infer_list_.size(); i++) {
      uf.MakeSet(i);
    }
    for (const auto &[buffer, infer_indices] : use_list_) {
      if (infer_indices.empty())
        continue;

      // Union all infer_list_ indices that share the same buffer
      int first_idx = infer_indices[0];
      for (size_t i = 1; i < infer_indices.size(); i++) {
        uf.Union(first_idx, infer_indices[i]);
      }
    }
    std::unordered_map<int, std::vector<int>> components;
    for (int i = 0; i < infer_list_.size(); i++) {
      int root = uf.Find(i);
      components[root].push_back(i);
    }
449
    // Create a map from root to buffers
450
451
452
453
454
    std::unordered_map<int, std::vector<Buffer>> components_buffers;
    for (const auto &[buffer, infer_indices] : use_list_) {
      int root = uf.Find(infer_indices[0]);
      components_buffers[root].push_back(buffer);
    }
455
456
    // Keep components_buffers for debug purpose
    (void)components_buffers;
457
458
459
460
461

    // For each component, try each op as root, and determine the least
    // replicated one
    std::queue<int> q;
    std::vector<bool> in_queue(infer_list_.size(), false);
462

463
464
465
466
    for (auto &&[root, members] : components) {
      decltype(infer_list_) best_infer_list;
      LayoutMap best_layout_map;
      int64_t min_reg_num = INT64_MAX;
467

468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
      for (int attempt_infer_root : members) {
        // backup infer_list_ in class member
        auto back_infer_list = BackupInferList();
        // create temporarily used layout_map, new handle so that it copies on
        // write
        LayoutMap tmp_layout_map = layout_map;
        // infer from attempt_infer_root in free mode
        bool do_update = true;
        try {
          RunInferStep(attempt_infer_root, InferLevel::kFree, true,
                       tmp_layout_map, strict_layout_map, q, in_queue);
          FinishInferQueue(InferLevel::kFree, tmp_layout_map, strict_layout_map,
                           q, in_queue);
          // Silly workaround: we have no clue if single root will iterate over
          // the entire component, since the InferLayout implementations have
          // complicated conditioning inside and we know nothing about it.
          // This would constantly result in incomplete layouts for buffers in
          // this component. Instead of trying all combinations of root
          // selection order, we simply go through all other loops in order
          // after the first search from attempt_infer_root.
          for (int other_infer_root : members) {
            if (other_infer_root != attempt_infer_root) {
              RunInferStep(other_infer_root, InferLevel::kFree, true,
                           tmp_layout_map, strict_layout_map, q, in_queue);
              // must also be kFree here to avoid conflicts.
              FinishInferQueue(InferLevel::kFree, tmp_layout_map,
                               strict_layout_map, q, in_queue);
            }
          }
        } catch (LayoutConflictException e) {
          // such an order fails, try others
          do_update = false;
        } catch (NormalizeIterException e) {
          // such an order encounters iterators that is not normalizable, try
          // others e.g. i * 576 % 2048
          do_update = false;
        }

        if (do_update) {
          // compute total register number
          int64_t reg_num = 0;
          for (auto &&[buffer, layout] : tmp_layout_map) {
            if (auto frag = layout.as<Fragment>()) {
              int64_t frag_reg_num = 1;
              for (auto i : frag.value()->OutputShape()) {
                auto pci = as_const_int(i);
                ICHECK(pci != nullptr);
                frag_reg_num *= *pci;
              }
              reg_num += frag_reg_num;
            }
          }
          // if it's any better, update the best_* storage
          if (reg_num < min_reg_num) {
            best_infer_list = std::move(infer_list_);
            best_layout_map = tmp_layout_map;
            min_reg_num = reg_num;
          }
        }
        // recover stateful infer_list_, head on next
        infer_list_ = std::move(back_infer_list);
      }
      if (min_reg_num < INT64_MAX) {
        // now apply the best plan for this component
        infer_list_ = std::move(best_infer_list);
        layout_map = best_layout_map;
      }
    }
  }
537
538
539
};

class LayoutInferencer : public IRMutatorWithAnalyzer {
540
public:
541
  static PrimFunc Substitute(PrimFunc f, bool skip_thread_partition = false) {
542
    arith::Analyzer analyzer;
543
    PrimFuncNode *fptr = f.CopyOnWrite();
544
    fptr->body = ParallelLoopFuser::Fuse(f->body);
545
    BufferUseDefCollector collector(skip_thread_partition);
546
547
    collector.Collect(f);
    auto result = collector.Run();
548
    LayoutInferencer substituter(result, skip_thread_partition, &analyzer);
549
550
551
552
    fptr->body = substituter.VisitStmt(f->body);
    return f;
  }

553
554
private:
  LayoutInferencer(const LayoutInferenceResult result,
555
556
557
                   bool skip_thread_partition, arith::Analyzer *analyzer)
      : arith::IRMutatorWithAnalyzer(analyzer), result_(result),
        skip_thread_partition_(skip_thread_partition){};
558

559
560
561
562
563
564
565
566
567
568
569
570
571
572
  /**
   * @brief Visit and mutate a Block node to attach inferred layout information.
   *
   * Converts the visited Block via the base visitor, asserts that every buffer
   * allocated with scope "local.framgent" has an inferred layout in
   * result_.layout_map, and attaches result_.layout_map to the Block's
   * annotations under attr::kLayoutMap.
   *
   * If any "local.framgent" buffer lacks an entry in result_.layout_map an
   * ICHECK will fail with the offending buffer printed.
   *
   * @return Stmt The (possibly modified) Block statement with the layout-map
   * annotation set.
   */
573
  Stmt VisitStmt_(const BlockNode *op) final {
574
575
576
577
578
579
580
581
582
583
584
585
586
    Block block = Downcast<Block>(IRMutatorWithAnalyzer::VisitStmt_(op));

    for (auto buffer : block->alloc_buffers) {
      if (buffer.scope() == "local.framgent") {
        ICHECK(result_.layout_map.count(buffer))
            << "Cannot inference fragment layout for " << buffer;
      }
    }
    auto block_ptr = block.CopyOnWrite();
    block_ptr->annotations.Set(attr::kLayoutMap, result_.layout_map);
    return block;
  }

587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
  /**
   * @brief Visit and transform For nodes according to inferred layout
   * information.
   *
   * If the For node is present in result_.for_map, this method applies
   * loop-level layout-driven transformations: it optionally partitions the loop
   * across the thread index, vectorizes the loop body, and wraps the loop with
   * a predicate if one was inferred for the loop root.
   *
   * Detailed behavior:
   * - Reads reducer information from the For node's attr::kReducerInfo
   * annotation (if present) to detect reduction targets.
   * - Detects register-local buffer stores (buffers with scope "local") in the
   *   original loop body; if only register-local stores are present the loop is
   *   treated as a register-local scenario and is not partitioned across
   * threads.
   * - Obtains the loop layout from result_.for_map[root] and, unless the loop
   * is register-local or skip_thread_partition_ is set, partitions the loop via
   *   PartitionLoop using thread_var_ and analyzer_.
   * - Scans the transformed loop body to determine whether it accesses any
   *   non-local buffers (scopes other than "local" or "local.fragment").
   * - Scans the transformed loop body to detect reducers (based on
   * reducer_info). If a reducer is present the loop is NOT vectorized
   * (reduction axes are excluded from vectorization as a conservative
   * workaround).
   * - If the loop has non-local accesses and no reducer, the loop is vectorized
   *   via VectorizeLoop.
   * - If a predicate exists in result_.predicate_map for the loop root and the
   *   loop was partitioned, the method returns an IfThenElse surrounding the
   *   (possibly partitioned/vectorized) loop with that predicate; otherwise it
   *   returns the transformed For.
   *
   * @return The possibly transformed For statement (or an IfThenElse wrapping
   * it)
   */
622
  Stmt VisitStmt_(const ForNode *op) final {
623
624
625
626
627
628
    Map<Var, ReducerInfo> reducer_info;
    if (op->annotations.count(attr::kReducerInfo))
      reducer_info = op->annotations.Get(attr::kReducerInfo)
                         ->as<Map<Var, ReducerInfo>>()
                         .value();

629
630
    For for_node = Downcast<For>(IRMutatorWithAnalyzer::VisitStmt_(op));
    if (result_.for_map.count(GetRef<For>(op))) {
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
      auto root = GetRef<For>(op);
      // This check is a workaround to support T.Parallel for local buffers.
      // For example:
      //   for i in T.Parallel(1024):
      //     A_local[i] = A_global[i]
      // Here, A_local is a register-local buffer held independently by each
      // thread, so explicit thread binding is not required.
      //
      // We use PostOrderVisit to detect whether the buffer store targets a
      // "local" buffer, which indicates register usage and justifies skipping
      // thread binding.
      bool is_register_store = false;
      PostOrderVisit(root, [&](const ObjectRef &obj) {
        if (const auto *store = obj.as<BufferStoreNode>()) {
          if (store->buffer.scope() == "local") {
            is_register_store = true;
          }
        }
      });

651
      auto loop_layout = result_.for_map[root];
652
      bool parallel_loop = !is_register_store && !skip_thread_partition_;
653

654
      if (parallel_loop) {
655
656
657
        for_node =
            PartitionLoop(for_node, thread_var_->var, analyzer_, loop_layout);
      }
658
      // If none thread bindings are provided, partition the loop
659
660
661
662
663
664
665
666
667
668
669
670
671
672
      bool has_non_local = false;
      PostOrderVisit(for_node->body, [&](const ObjectRef &obj) {
        if (const auto *load = obj.as<BufferLoadNode>()) {
          String scope = load->buffer.scope();
          if (scope != "local" && scope != "local.fragment") {
            has_non_local = true;
          }
        } else if (const auto *store = obj.as<BufferStoreNode>()) {
          String scope = store->buffer.scope();
          if (scope != "local" && scope != "local.fragment") {
            has_non_local = true;
          }
        }
      });
673
674
675
676
677
678
679
680
681
      // Workaround: if reducer is presented, don't vectorize loop
      // Best solution should be isolate reduction axis out of vectorization
      bool has_reducer = false;
      PostOrderVisit(for_node->body, [&](const ObjectRef &obj) {
        if (!has_reducer)
          if (const auto *store = obj.as<BufferStoreNode>()) {
            has_reducer = reducer_info.count(store->buffer->data) != 0;
          }
      });
682

683
      if (has_non_local && !has_reducer) {
684
685
        for_node = VectorizeLoop(for_node);
      }
686

687
688
      if (result_.predicate_map.count(root) && parallel_loop) {
        return IfThenElse(result_.predicate_map[root], for_node);
689
690
691
692
693
694
695
      } else {
        return for_node;
      }
    }
    return for_node;
  }

696
  Stmt VisitStmt_(const AttrStmtNode *op) final {
697
698
699
700
701
702
703
704
705
706
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      ICHECK_NE(iv->thread_tag.length(), 0U);
      if (iv->thread_tag == "threadIdx.x") {
        thread_var_ = iv;
      }
    }
    return IRMutatorWithAnalyzer::VisitStmt_(op);
  }

707
private:
708
  const LayoutInferenceResult result_;
709
710
  IterVar thread_var_ = IterVar(Range::FromMinExtent(0, 1), Var("v_thread"),
                                IterVarType::kDataPar);
711
  bool skip_thread_partition_{false};
712
713
714
715
716
};

tvm::transform::Pass LayoutInference() {
  using namespace tir::transform;
  auto pass_func = [=](PrimFunc f, IRModule m, PassContext ctx) {
717
    f.CopyOnWrite()->body = ParallelLoopTransformer::Substitute(f->body);
718
    ThreadBindingCollector collector;
719
    collector(f->body);
720
721
    bool has_thread_binding = collector.thread_binding_.size() > 0;
    bool skip_thread_partition = !has_thread_binding;
722
    return LayoutInferencer::Substitute(std::move(f), skip_thread_partition);
723
724
725
726
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.LayoutInference", {});
}

727
728
729
730
TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.LayoutInference", LayoutInference);
});
731

732
733
} // namespace tl
} // namespace tvm