parallel.cc 16.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
/*!
 * \file op/parallel.cc
 * \brief Define Parallel for operator
 */

#include "parallel.h"

#include <tvm/tir/op.h>

#include "../layout/utils.h"
#include "../target/utils.h"
#include "../transform/loop_partition.h"
#include "../transform/loop_vectorize.h"

namespace tvm {
namespace tl {

using namespace tir;

namespace attr {
/*! \brief Mark that how the loop is vectorized. */
constexpr const char *coalesced_width = "coalesced_width";
23
} // namespace attr
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
// ProveFragmentContains checks whether the threads that access elements of a
// smaller fragment (small_frag) are a subset of the threads that access
// elements of a larger fragment (large_frag) for any given loop index. This
// function ensures that if the small fragment's layout corresponds to the loop
// itself, accessing the large fragment's elements is valid. Additionally, if
// small is updated to large, the originally valid access remains valid. The
// proof is performed by:
//
// 1. Defining a variable `rep_small` to represent the replicate index of the
//    small fragment that is being checked.
// 2. Using the `small_frag_indices` and `rep_small` to derive the thread
// accessing
//    the element in the small fragment.
// 3. Using `large_frag_indices` to derive the physical index of the large
// fragment
//    along with the thread information, and then feeding these into the inverse
//    of the large fragment to obtain the logical index and replicate index.
// 4. Verifying the mapping by checking whether the computed thread using the
// inverse
//    layout corresponds to the original thread calculated for the small
//    fragment. If they don't match, this indicates that the inverse layout's
//    domain does not include the thread and thus the access is invalid.
bool ProveFragmentContains(Fragment small_frag, Fragment large_frag,
                           Array<PrimExpr> small_frag_indices,
                           Array<PrimExpr> large_frag_indices,
                           arith::Analyzer &analyzer_) {
  Var rep_small("__checking_frag_contains_rep");
  analyzer_.Bind(rep_small,
                 Range(IntImm(small_frag->ReplicateExtent()->dtype, 0),
                       small_frag->ReplicateExtent()),
                 true); // Bind the replicate extent of small_frag.
  // Derive thread for small_frag.
  auto thread = small_frag->ForwardThread(small_frag_indices, rep_small);

  // Get physical index and thread for large_frag.
  auto large_frag_physical_and_thread = large_frag->Forward(large_frag_indices);
  // Add small_frag's thread to the large fragment's thread info.
  large_frag_physical_and_thread.push_back(thread);
  // Get the inverse of the large fragment.
  auto inv_large_frag = large_frag->Inverse();
  // Compute logical index and replicate index using inverse layout.
  auto inv_large_frag_logical_and_rep =
      inv_large_frag->Forward(large_frag_physical_and_thread);

  // Extract replicate index from the result.
  auto inv_large_frag_rep =
      inv_large_frag_logical_and_rep[inv_large_frag_logical_and_rep.size() - 1];

  // Calculate thread based on the logical index and replicate index.
  auto check_thread =
      large_frag->ForwardThread(large_frag_indices, inv_large_frag_rep);

  // Simplify the difference between the threads.
  auto diff = analyzer_.Simplify(thread - check_thread);
  // If the difference is zero, the threads match and the access is valid.
  return is_zero(diff);
}

83
class IfBufferRemapLoopGenerator : public StmtExprMutator {
84
public:
85
86
87
88
89
90
  static For run(Stmt stmt, Map<Buffer, Buffer> buffer_remap,
                 Map<Buffer, Layout> layout_map) {
    IfBufferRemapLoopGenerator generator(buffer_remap, layout_map);
    return Downcast<For>(generator(std::move(stmt)));
  }

91
92
93
private:
  IfBufferRemapLoopGenerator(Map<Buffer, Buffer> buffer_remap,
                             Map<Buffer, Layout> layout_map)
94
95
      : buffer_remap_(buffer_remap), layout_map_(layout_map) {}

96
  PrimExpr VisitExpr_(const BufferLoadNode *op) final {
97
98
99
100
101
102
103
104
105
106
107
    auto load = Downcast<BufferLoad>(StmtExprMutator::VisitExpr_(op));

    if (buffer_remap_.count(load->buffer)) {
      auto new_indices = layout_map_[load->buffer]->Forward(load->indices);
      auto new_buffer = buffer_remap_[load->buffer];

      return BufferLoad(new_buffer, new_indices);
    }
    return load;
  }

108
  Stmt VisitStmt_(const BufferStoreNode *op) final {
109
110
111
112
113
114
115
116
117
118
119
120
121
    auto store = Downcast<BufferStore>(StmtExprMutator::VisitStmt_(op));
    if (buffer_remap_.count(store->buffer)) {
      auto new_indices = layout_map_[store->buffer]->Forward(store->indices);
      auto new_buffer = buffer_remap_[store->buffer];
      return BufferStore(new_buffer, store->value, new_indices);
    }
    return store;
  }

  Map<Buffer, Buffer> buffer_remap_;
  Map<Buffer, Layout> layout_map_;
};

122
void ParallelLoopNestVisitor::VisitStmt_(const ForNode *op) {
123
  ICHECK(op->kind == ForKind::kParallel);
124
125
  p->loop_vars_.push_back(
      IterVar(Range(op->min, op->extent), op->loop_var, IterVarType::kDataPar));
126
  p->analyzer_.Bind(op->loop_var, Range::FromMinExtent(op->min, op->extent));
127
128
129
130
131
132
  auto reducer_info_map =
      op->annotations.Get(attr::kReducerInfo)->as<Map<Var, ReducerInfo>>();
  if (reducer_info_map) {
    for (auto &&[buffer, info] : reducer_info_map.value())
      p->reducer_info_map_.Set(buffer, info);
  }
133
134
135
  StmtExprVisitor::VisitStmt_(op);
}

136
void ParallelLoopNestVisitor::VisitStmt_(const BufferStoreNode *op) {
137
138
139
  if (op->buffer.scope() == "local.fragment") {
    if (p->indice_map_.find(op->buffer) != p->indice_map_.end()) {
      ICHECK(StructuralEqual()(p->indice_map_.at(op->buffer), op->indices))
140
141
          << op->buffer << ": " << op->indices << " and "
          << p->indice_map_.at(op->buffer);
142
143
144
145
146
147
148
149
    } else {
      p->indice_map_.Set(op->buffer, op->indices);
    }
    p->buffer_is_write_.insert(op->buffer);
  }
  StmtExprVisitor::VisitStmt_(op);
}

150
void ParallelLoopNestVisitor::VisitExpr_(const BufferLoadNode *op) {
151
152
153
  if (op->buffer.scope() == "local.fragment") {
    if (p->indice_map_.find(op->buffer) != p->indice_map_.end()) {
      ICHECK(StructuralEqual()(p->indice_map_.at(op->buffer), op->indices))
154
155
          << op->buffer << ": " << op->indices << " and "
          << p->indice_map_.at(op->buffer);
156
157
158
159
160
161
162
    } else {
      p->indice_map_.Set(op->buffer, op->indices);
    }
  }
  StmtExprVisitor::VisitExpr_(op);
}

163
164
165
166
167
168
169
170
171
172
173
174
175
ParallelOpNode::ParallelOpNode(For root) : root_(root), V(this) {
  V.VisitStmt(root);
}

TileOperator ParallelOpNode::Clone() const {
  auto op = make_object<ParallelOpNode>(*this);
  return ParallelOp(op);
}

Stmt ParallelOpNode::Lower(const LowerArgs &T,
                           arith::Analyzer *analyzer) const {
  return root_;
}
176

177
bool ParallelOpNode::IsCommonAccessIndice(const Buffer &buffer) const {
178
  auto common_indice = loop_vars_.Map([](const auto &iv) { return iv->var; });
179
180
181
  return StructuralEqual()(indice_map_[buffer], common_indice);
}

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
/*! \brief Infer the layout for parallel operations based on different inference
 * levels
 *
 * The inference level controls how aggressively we try to infer and optimize
 * layouts:
 * - kStrict (2): Most conservative level. Only allows explicitly defined
 * layouts. Returns empty layout map if loop_layout_ is not already defined.
 *                Used when exact layout control is required.
 *
 * - kCommon (1): Intermediate level between strict and free.
 *                Allows common layout patterns while maintaining some
 * constraints.
 *
 * - kFree (0):   Most permissive level. Allows maximum optimization freedom.
 *                Will attempt layout inference even without source buffers.
 *                Can generate new layouts based on vectorization and thread
 * bounds. Used when maximum performance optimization is desired.
 */
200
201
LayoutMap ParallelOpNode::InferLayout(const LayoutInferArgs &T,
                                      InferLevel level) const {
202
203
204
205
  if (loop_layout_.defined())
    return {};
  if (level == InferLevel::kStrict)
    return {};
206
207
208

  // Step 1: try to infer loop's partition from a source fragment
  Buffer source_buffer, read_source_buffer;
209
  for (const auto &[buffer, indices] : indice_map_) {
210
    if (T.layout_map.count(buffer)) {
211
212
213
214
215
      // skip reducers with rep=ALL
      if (auto info = reducer_info_map_.Get(buffer->data);
          info && info.value()->rep == ReducerRepType::ALL)
        continue;

216
      auto frag = T.layout_map[buffer].as<Fragment>().value();
217
      if (buffer_is_write_.count(buffer)) {
218
        source_buffer = buffer;
219
220
221
222
223
224
225
226
227
      } else {
        // Keep the buffer with largest number of indices
        // (which means the inference based on that buffer is more accurate)
        // as read_source_buffer to get more accurate layout
        if (!read_source_buffer.defined() ||
            indice_map_[buffer].size() >
                indice_map_[read_source_buffer].size()) {
          read_source_buffer = buffer;
        }
228
229
230
231
        // If the buffer is not replicated and shape is equal to the
        // source_buffer, use it as source_buffer because the layout inference
        // is more accurate
        if (is_one(frag->ReplicateExtent()) && !source_buffer.defined()) {
232
233
          source_buffer = buffer;
        }
234
      }
235
236
    }
  }
237
  auto compute_loop_layout_from_buffer = [&](const Buffer &buffer) {
238
239
240
241
242
    Fragment src_layout = T.layout_map[buffer].as<Fragment>().value();
    if (IsCommonAccessIndice(buffer)) {
      return src_layout;
    } else {
      Var rep;
243
244
245
246
      auto rep_iter = IterVar({0, src_layout->ReplicateExtent()}, rep,
                              IterVarType::kDataPar);
      PrimExpr loop_var_to_thread =
          src_layout->ForwardThread(indice_map_[buffer], rep);
247
      return Fragment(loop_vars_, {}, loop_var_to_thread, rep_iter)
248
          ->BindThreadRange(T.thread_bounds);
249
250
251
252
253
254
255
    }
  };
  if (source_buffer.defined()) {
    loop_layout_ = compute_loop_layout_from_buffer(source_buffer);
  } else if (level == InferLevel::kFree) {
    if (read_source_buffer.defined()) {
      loop_layout_ = compute_loop_layout_from_buffer(read_source_buffer);
256
257
258
      // // Loop don't need to be replicated.
      // if (!is_one(loop_layout_->ReplicateExtent()))
      //   loop_layout_ = loop_layout_->DeReplicate();
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

      // For free layout inference
      // If replication exists and buffer has cross-thread shared memory access,
      // add predicate
      bool has_cross_thread_access = false;
      PostOrderVisit(root_, [&](const ObjectRef &obj) {
        if (const auto *store = obj.as<BufferStoreNode>()) {
          // check if scope is shared or global
          if (store->buffer.scope() == "shared" ||
              store->buffer.scope() == "shared.dyn" ||
              store->buffer.scope() == "global") {
            has_cross_thread_access = true;
          }
        } else if (const auto *load = obj.as<BufferLoadNode>()) {
          // check if scope is shared or global
          if (load->buffer.scope() == "shared" ||
              load->buffer.scope() == "shared.dyn" ||
              load->buffer.scope() == "global") {
            has_cross_thread_access = true;
          }
        }
      });

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
      // check if loop body contains a "pure" buffer store (i.e., direct
      // assignment, not compound update)
      bool has_pure_buffer_store = false;
      PostOrderVisit(root_, [&](const ObjectRef &obj) {
        if (const auto *store = obj.as<BufferStoreNode>()) {
          // Check if the value is a direct load from another buffer (i.e., b[i]
          // = a[i])
          if (const auto *load = store->value.as<BufferLoadNode>()) {
            has_pure_buffer_store = true;
          }
        }
      });

      if (!is_one(loop_layout_->ReplicateExtent()) && has_cross_thread_access &&
          !has_pure_buffer_store) {
297
298
299
300
        auto inv = loop_layout_->Inverse();
        Array<PrimExpr> fwd;
        for (size_t i = 0; i < loop_layout_->OutputDim(); i++)
          fwd.push_back(0);
301
        fwd.push_back(InputPlaceholder(0) - T.thread_bounds->min);
302
303
304
        auto rep = inv->Forward(fwd).back();
        AddPredicate(EQ(rep, 0));
      }
305
306
307
    } else {
      // Vectorize Size must be aware of the buffer_remap
      // As the pass will do post processing to the layout
308
309
      auto maybe_remapped_root_ =
          IfBufferRemapLoopGenerator::run(root_, T.buffer_remap, T.layout_map);
310
311
      int vector_size = GetVectorizeSize(maybe_remapped_root_);

312
313
314
315
316
317
318
319
320
321
      PrimExpr loop_total_size = 1;
      for (Stmt l = root_; l.as<For>().has_value();
           l = l.as<For>().value()->body)
        loop_total_size = loop_total_size * l.as<For>().value()->extent;
      while (!analyzer_.CanProve(
                 floormod(loop_total_size,
                          T.thread_bounds->extent * vector_size) == 0) &&
             vector_size > 1)
        vector_size /= 2;

322
      // Check if coalesced_width is defined
323
324
      if (auto coalesced_width =
              root_->annotations.Get(tl::attr::coalesced_width)) {
325
        if (const auto *imm = coalesced_width->as<IntImmNode>()) {
326
327
328
          int expected = imm->value;
          // Verify that vector_size is divisible by expected
          if (vector_size % expected != 0) {
329
330
            LOG(FATAL) << "Vector size " << vector_size
                       << " is not divisible by coalesced width " << expected;
331
332
333
334
335
336
          }
          vector_size = expected;
        } else {
          LOG(FATAL) << "coalesced_width should be an IntImmNode.";
        }
      }
337
      loop_layout_ = PlanLoopPartition(root_, vector_size, T.thread_bounds);
338
339
340
341
    }
  } else {
    return {};
  }
342

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
  PrimExpr loop_thread_extent = loop_layout_->ThreadExtent();

  auto block_size = T.thread_bounds->extent;
  if (loop_layout_.defined()) {
    if (loop_layout_->ThreadRange().defined()) {
      auto thread_range = loop_layout_->ThreadRange();
      block_size = thread_range->extent;
      AddPredicate(GE(InputPlaceholder(0), thread_range->min));
      AddPredicate(
          LT(InputPlaceholder(0), thread_range->min + thread_range->extent));
    }
  }

  if (!analyzer_.CanProveEqual(loop_thread_extent, block_size)) {
    AddPredicate(
        LT(InputPlaceholder(0), loop_thread_extent + T.thread_bounds->min));
  }

361
  // Step 2: Check that the loop's partition can correctly align with all source
362
363
  // fragment, and infer layout only when it's not yet layout-ed
  LayoutMap results;
364
  for (const auto &[buffer, _] : indice_map_) {
365
366
    if (T.layout_map.count(buffer)) {
      auto fragment = T.layout_map[buffer].as<Fragment>().value();
367
368
      auto vars =
          loop_vars_.Map([](const IterVar &iv) { return PrimExpr(iv->var); });
369
370
371
372
373
374
375
376
      if (!ProveFragmentContains(loop_layout_, fragment, vars,
                                 indice_map_[buffer], analyzer_)) {
        std::ostringstream oss;
        oss << "Layout infer conflict between " << buffer << " and "
            << source_buffer << " in T.Parallel loop:" << std::endl
            << "    loop " << loop_layout_->DebugOutput() << std::endl
            << "    fragment " << fragment->DebugOutput() << std::endl;
        throw LayoutConflictException(oss.str());
377
      }
378
379
380
381
    } else {
      auto dst_layout =
          CompleteBufferFragment(buffer)->BindThreadRange(T.thread_bounds);
      results.Set(buffer, dst_layout);
382
    }
383
384
385
386
  }
  return results;
}

387
Optional<PrimExpr> ParallelOpNode::GetPredicate(Var thread_var) const {
388
389
390
  if (predicate_.defined()) {
    return Substitute(predicate_.value(), {{InputPlaceholder(0), thread_var}});
  } else {
391
    return std::nullopt;
392
393
394
  }
}

395
Fragment ParallelOpNode::CompleteBufferFragment(const Buffer &buffer) const {
396
  ICHECK(loop_layout_.defined());
397
  if (IsCommonAccessIndice(buffer)) {
398
    return loop_layout_;
399
  }
400
401
  PrimExpr rep_b = MakeFlattenedExpression(
      DivideUnusedIterators(indice_map_[buffer], loop_vars_, &analyzer_));
402
403
404
  auto bijective_indice = indice_map_[buffer];
  bijective_indice.push_back(rep_b);
  Layout ind_inv = Layout(loop_vars_, bijective_indice)->Inverse();
405
406
  PrimExpr indice_rep_extent =
      ind_inv->InputShape().back(); // this is the size of rep_b
407
408
409
410
411
412
413
414
  PrimExpr loop_rep_extent = loop_layout_->ReplicateExtent();
  PrimExpr dest_buffer_rep_extent = indice_rep_extent * loop_rep_extent;
  Array<PrimExpr> fwd;
  for (size_t i = 0; i < buffer->shape.size(); i++) {
    fwd.push_back(InputPlaceholder(i));
  }
  fwd.push_back(FloorMod(ReplicationPlaceholder(), indice_rep_extent));
  PrimExpr thd_b = loop_layout_->ForwardThread(
415
416
      ind_inv->Forward(fwd),
      FloorDiv(ReplicationPlaceholder(), indice_rep_extent));
417
418
  return Fragment(buffer->shape, {}, thd_b, dest_buffer_rep_extent,
                  std::nullopt)
419
420
421
      ->CondenseReplicateVar();
}

422
423
} // namespace tl
} // namespace tvm