example_gqa_bwd.py 23.7 KB
Newer Older
1
2
3
4
5
6
7
import torch
import torch.nn.functional as F
import tilelang
import tilelang.language as T
import argparse


8
9
10
11
@tilelang.jit(
    out_idx=[3, 4], pass_configs={
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
    })
12
def flashattn_fwd(batch, heads, seq_len, dim_qk, dim_v, is_causal, block_M, block_N, groups=1):
13
14
15
16
17
18
19
20
21
22
    scale = (1.0 / dim_qk)**0.5 * 1.44269504  # log2(e)
    head_kv = heads // groups
    q_shape = [batch, seq_len, heads, dim_qk]
    k_shape = [batch, seq_len, head_kv, dim_qk]
    v_shape = [batch, seq_len, head_kv, dim_v]
    dtype = "float16"
    accum_dtype = "float"

    @T.prim_func
    def flash_fwd(
23
24
25
26
27
            Q: T.Tensor(q_shape, dtype),  # type: ignore
            K: T.Tensor(k_shape, dtype),  # type: ignore
            V: T.Tensor(v_shape, dtype),  # type: ignore
            Output: T.Tensor([batch, seq_len, heads, dim_v], dtype),  # type: ignore
            lse: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
28
    ):
29
        with T.Kernel(T.ceildiv(seq_len, block_M), heads, batch, threads=256) as (bx, by, bz):
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
            Q_shared = T.alloc_shared([block_M, dim_qk], dtype)
            K_shared = T.alloc_shared([block_N, dim_qk], dtype)
            V_shared = T.alloc_shared([block_N, dim_v], dtype)
            acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
            acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
            acc_o = T.alloc_fragment([block_M, dim_v], accum_dtype)
            scores_max = T.alloc_fragment([block_M], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
            scores_scale = T.alloc_fragment([block_M], accum_dtype)
            scores_sum = T.alloc_fragment([block_M], accum_dtype)
            logsum = T.alloc_fragment([block_M], accum_dtype)

            T.annotate_layout({Q_shared: tilelang.layout.make_swizzled_layout(Q_shared)})
            T.copy(Q[bz, bx * block_M:(bx + 1) * block_M, by, :], Q_shared)
            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))
            loop_range = (
                T.ceildiv(
49
                    (bx + 1) * block_M, block_N) if is_causal else T.ceildiv(seq_len, block_N))
50
51
            for k in T.Pipelined(loop_range, num_stages=1):
                T.copy(K[bz, k * block_N:(k + 1) * block_N, by // groups, :], K_shared)
52
                if is_causal:
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
                    for i, j in T.Parallel(block_M, block_N):
                        acc_s[i, j] = T.if_then_else(bx * block_M + i >= k * block_N + j, 0,
                                                     -T.infinity(acc_s.dtype))
                else:
                    T.clear(acc_s)
                T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
                T.copy(V[bz, k * block_N:(k + 1) * block_N, by // groups, :], V_shared)
                T.copy(scores_max, scores_max_prev)
                T.reduce_max(acc_s, scores_max, dim=1, clear=False)
                for i in T.Parallel(block_M):
                    scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
                for i, j in T.Parallel(block_M, dim_v):
                    acc_o[i, j] *= scores_scale[i]
                for i, j in T.Parallel(block_M, block_N):
                    acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
                T.copy(acc_s, acc_s_cast)
                T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)
                T.reduce_sum(acc_s, scores_sum, dim=1)
                for i in T.Parallel(block_M):
                    logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
            for i, j in T.Parallel(block_M, dim_v):
                acc_o[i, j] /= logsum[i]
            T.copy(acc_o, Output[bz, bx * block_M:(bx + 1) * block_M, by, :])
            for i in T.Parallel(block_M):
                logsum[i] = T.log2(logsum[i]) + scores_max[i] * scale
            T.copy(logsum, lse[bz, by, bx * block_M:(bx + 1) * block_M])

    return flash_fwd


83
84
85
86
@tilelang.jit(
    out_idx=[2], pass_configs={
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
    })
87
88
89
90
91
92
93
94
def flashattn_bwd_preprocess(batch, heads, seq_len, dim_v):
    dtype = "float16"
    accum_dtype = "float"
    shape = [batch, seq_len, heads, dim_v]
    blk = 32

    @T.prim_func
    def flash_bwd_prep(
95
96
97
            O: T.Tensor(shape, dtype),  # type: ignore
            dO: T.Tensor(shape, dtype),  # type: ignore
            Delta: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    ):
        with T.Kernel(heads, T.ceildiv(seq_len, blk), batch) as (bx, by, bz):
            o = T.alloc_fragment([blk, blk], dtype)
            do = T.alloc_fragment([blk, blk], dtype)
            acc = T.alloc_fragment([blk, blk], accum_dtype)
            delta = T.alloc_fragment([blk], accum_dtype)
            T.clear(acc)
            for k in range(T.ceildiv(dim_v, blk)):
                T.copy(O[bz, by * blk:(by + 1) * blk, bx, k * blk:(k + 1) * blk], o)
                T.copy(dO[bz, by * blk:(by + 1) * blk, bx, k * blk:(k + 1) * blk], do)
                for i, j in T.Parallel(blk, blk):
                    acc[i, j] += o[i, j] * do[i, j]
            T.reduce_sum(acc, delta, 1)
            T.copy(delta, Delta[bz, bx, by * blk:(by + 1) * blk])

    return flash_bwd_prep


def make_dq_layout(dQ):
    # atomicAdd can not be vectorized, so we need to reorder dq to match the 8x8 gemm fragment
    return T.Layout(dQ.shape,
                    lambda b, l, h, d: [b, l // 8, h, d // 8, (d % 2), 4 * (l % 8) + (d % 8) // 2])


122
123
124
125
@tilelang.jit(
    out_idx=[1], pass_configs={
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
    })
126
127
128
129
130
131
132
133
def flashattn_bwd_postprocess(batch, heads, seq_len, dim_qk):
    dtype = "float16"
    accum_dtype = "float"
    shape = [batch, seq_len, heads, dim_qk]
    blk = 64

    @T.prim_func
    def flash_bwd_post(
134
135
            dQ: T.Tensor(shape, accum_dtype),  # type: ignore
            dQ_out: T.Tensor(shape, dtype),  # type: ignore
136
137
138
139
140
141
142
143
144
145
146
    ):
        with T.Kernel(T.ceildiv(seq_len, blk), heads, batch, threads=128) as (bx, by, bz):
            T.annotate_layout({dQ: make_dq_layout(dQ)})
            T.copy(
                dQ[bz, bx * blk:(bx + 1) * blk, by, :],
                dQ_out[bz, bx * blk:(bx + 1) * blk, by, :],
            )

    return flash_bwd_post


147
148
149
@tilelang.jit(pass_configs={
    tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
})
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
def flashattn_bwd_atomic_add(batch,
                             heads,
                             seq_len,
                             dim_qk,
                             dim_v,
                             is_causal,
                             block_M,
                             block_N,
                             threads=256,
                             num_stages=2,
                             groups=1):
    sm_scale = (1.0 / dim_qk)**0.5
    scale = (1.0 / dim_qk)**0.5 * 1.44269504  # log2(e)
    head_kv = heads // groups
    q_shape = [batch, seq_len, heads, dim_qk]
    k_shape = [batch, seq_len, head_kv, dim_qk]
    v_shape = [batch, seq_len, head_kv, dim_v]
    dtype = "float16"
    accum_dtype = "float"

    @T.prim_func
    def flash_bwd(
            Q: T.Tensor(q_shape, dtype),  # type: ignore
            K: T.Tensor(k_shape, dtype),  # type: ignore
            V: T.Tensor(v_shape, dtype),  # type: ignore
            dO: T.Tensor([batch, seq_len, heads, dim_v], dtype),  # type: ignore
            lse: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            Delta: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            dQ: T.Tensor(q_shape, accum_dtype),  # type: ignore
            dK: T.Tensor(k_shape, accum_dtype),  # type: ignore
            dV: T.Tensor(v_shape, accum_dtype),  # type: ignore
    ):
        with T.Kernel(heads, T.ceildiv(seq_len, block_M), batch, threads=threads) as (bx, by, bz):
            K_shared = T.alloc_shared([block_M, dim_qk], dtype)
            dsT_shared = T.alloc_shared([block_M, block_N], dtype)
            q = T.alloc_shared([block_N, dim_qk], dtype)
            V_shared = T.alloc_shared([block_M, dim_v], dtype)
            qkT = T.alloc_fragment([block_M, block_N], accum_dtype)
            dsT = T.alloc_fragment([block_M, block_N], accum_dtype)
            qkT_cast = T.alloc_fragment([block_M, block_N], dtype)
            dsT_cast = T.alloc_fragment([block_M, block_N], dtype)
            lse_shared = T.alloc_shared([block_N], accum_dtype)
            delta = T.alloc_shared([block_N], accum_dtype)
            do = T.alloc_shared([block_N, dim_v], dtype)
            dv = T.alloc_fragment([block_M, dim_v], accum_dtype)
            dk = T.alloc_fragment([block_M, dim_qk], accum_dtype)
            dq = T.alloc_fragment([block_N, dim_qk], accum_dtype)
            dk_shared = T.alloc_shared([block_M, dim_qk], accum_dtype)
            dv_shared = T.alloc_shared([block_M, dim_v], accum_dtype)

            T.annotate_layout({
                dQ: make_dq_layout(dQ),
                K_shared: tilelang.layout.make_swizzled_layout(K_shared),
            })

            T.copy(K[bz, by * block_M:(by + 1) * block_M, bx // groups, :], K_shared)
            T.copy(V[bz, by * block_M:(by + 1) * block_M, bx // groups, :], V_shared)
            T.clear(dv)
            T.clear(dk)
            loop_st = T.floordiv(by * block_M, block_N) if is_causal else 0
            loop_ed = T.ceildiv(seq_len, block_N)
            for k in T.Pipelined(loop_st, loop_ed, num_stages=num_stages):
                T.copy(Q[bz, k * block_N:(k + 1) * block_N, bx, :], q)
                T.clear(qkT)
                T.gemm(K_shared, q, qkT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
                T.copy(lse[bz, bx, k * block_N:(k + 1) * block_N], lse_shared)
                for i, j in T.Parallel(block_M, block_N):
                    qkT[i, j] = T.exp2(qkT[i, j] * scale - lse_shared[j])
                if is_causal:
                    for i, j in T.Parallel(block_M, block_N):
                        qkT[i, j] = T.if_then_else(by * block_M + i <= k * block_N + j, qkT[i, j],
                                                   0)
                T.copy(dO[bz, k * block_N:(k + 1) * block_N, bx, :], do)
                T.clear(dsT)
                T.gemm(V_shared, do, dsT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
                T.copy(qkT, qkT_cast)
                T.gemm(qkT_cast, do, dv, policy=T.GemmWarpPolicy.FullRow)

                T.copy(Delta[bz, bx, k * block_N:(k + 1) * block_N], delta)

                for i, j in T.Parallel(block_M, block_N):
                    dsT_cast[i, j] = qkT[i, j] * (dsT[i, j] - delta[j]) * sm_scale
                T.gemm(dsT_cast, q, dk, policy=T.GemmWarpPolicy.FullRow)

                T.copy(dsT_cast, dsT_shared)
                T.clear(dq)
                T.gemm(dsT_shared, K_shared, dq, transpose_A=True)
                for i, j in T.Parallel(block_N, dim_qk):
                    if k * block_N + i < seq_len:
                        T.atomic_add(dQ[bz, k * block_N + i, bx, j], dq[i, j])
            T.copy(dv, dv_shared)
            T.atomic_add(dV[bz, by * block_M:(by + 1) * block_M, bx // groups, :], dv_shared)
            T.copy(dk, dk_shared)
            T.atomic_add(dK[bz, by * block_M:(by + 1) * block_M, bx // groups, :], dk_shared)

    return flash_bwd


@tilelang.jit(pass_configs={
    tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
})
def flashattn_bwd_split(batch,
                        heads,
                        seq_len,
                        dim_qk,
                        dim_v,
                        is_causal,
                        block_M,
                        block_N,
                        threads=256,
                        num_stages=2,
                        groups=1):
262
263
264
265
266
267
    sm_scale = (1.0 / dim_qk)**0.5
    scale = (1.0 / dim_qk)**0.5 * 1.44269504  # log2(e)
    head_kv = heads // groups
    q_shape = [batch, seq_len, heads, dim_qk]
    k_shape = [batch, seq_len, head_kv, dim_qk]
    v_shape = [batch, seq_len, head_kv, dim_v]
268
269
    dk_shape = [groups, batch, seq_len, head_kv, dim_qk]  # sum after kernel
    dv_shape = [groups, batch, seq_len, head_kv, dim_v]  # sum after kernel
270
271
272
273
274
    dtype = "float16"
    accum_dtype = "float"

    @T.prim_func
    def flash_bwd(
275
276
277
278
279
280
281
            Q: T.Tensor(q_shape, dtype),  # type: ignore
            K: T.Tensor(k_shape, dtype),  # type: ignore
            V: T.Tensor(v_shape, dtype),  # type: ignore
            dO: T.Tensor([batch, seq_len, heads, dim_v], dtype),  # type: ignore
            lse: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            Delta: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            dQ: T.Tensor(q_shape, accum_dtype),  # type: ignore
282
283
            dK: T.Tensor(dk_shape, dtype),  # type: ignore
            dV: T.Tensor(dv_shape, dtype),  # type: ignore
284
    ):
285
        with T.Kernel(heads, T.ceildiv(seq_len, block_M), batch, threads=threads) as (bx, by, bz):
286
287
288
289
290
291
292
293
294
295
296
297
298
299
            K_shared = T.alloc_shared([block_M, dim_qk], dtype)
            dsT_shared = T.alloc_shared([block_M, block_N], dtype)
            q = T.alloc_shared([block_N, dim_qk], dtype)
            V_shared = T.alloc_shared([block_M, dim_v], dtype)
            qkT = T.alloc_fragment([block_M, block_N], accum_dtype)
            dsT = T.alloc_fragment([block_M, block_N], accum_dtype)
            qkT_cast = T.alloc_fragment([block_M, block_N], dtype)
            dsT_cast = T.alloc_fragment([block_M, block_N], dtype)
            lse_shared = T.alloc_shared([block_N], accum_dtype)
            delta = T.alloc_shared([block_N], accum_dtype)
            do = T.alloc_shared([block_N, dim_v], dtype)
            dv = T.alloc_fragment([block_M, dim_v], accum_dtype)
            dk = T.alloc_fragment([block_M, dim_qk], accum_dtype)
            dq = T.alloc_fragment([block_N, dim_qk], accum_dtype)
300
301
            dv_shared = T.alloc_shared([block_M, dim_v], dtype)
            dk_shared = T.alloc_shared([block_M, dim_qk], dtype)
302
303
304
305
306
307
308
309
310
311
312
313

            T.annotate_layout({
                dQ: make_dq_layout(dQ),
                K_shared: tilelang.layout.make_swizzled_layout(K_shared),
                dv_shared: tilelang.layout.make_swizzled_layout(dv_shared),
                dk_shared: tilelang.layout.make_swizzled_layout(dk_shared),
            })

            T.copy(K[bz, by * block_M:(by + 1) * block_M, bx // groups, :], K_shared)
            T.copy(V[bz, by * block_M:(by + 1) * block_M, bx // groups, :], V_shared)
            T.clear(dv)
            T.clear(dk)
314
            loop_st = T.floordiv(by * block_M, block_N) if is_causal else 0
315
            loop_ed = T.ceildiv(seq_len, block_N)
316
            for k in T.Pipelined(loop_st, loop_ed, num_stages=num_stages):
317
318
319
                T.copy(Q[bz, k * block_N:(k + 1) * block_N, bx, :], q)
                T.clear(qkT)
                T.gemm(K_shared, q, qkT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
320
321
322
                T.copy(dO[bz, k * block_N:(k + 1) * block_N, bx, :], do)
                T.clear(dsT)
                T.gemm(V_shared, do, dsT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
323
324
325
                T.copy(lse[bz, bx, k * block_N:(k + 1) * block_N], lse_shared)
                for i, j in T.Parallel(block_M, block_N):
                    qkT[i, j] = T.exp2(qkT[i, j] * scale - lse_shared[j])
326
                if is_causal:
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
                    for i, j in T.Parallel(block_M, block_N):
                        qkT[i, j] = T.if_then_else(by * block_M + i <= k * block_N + j, qkT[i, j],
                                                   0)
                T.copy(qkT, qkT_cast)
                T.gemm(qkT_cast, do, dv, policy=T.GemmWarpPolicy.FullRow)

                T.copy(Delta[bz, bx, k * block_N:(k + 1) * block_N], delta)

                for i, j in T.Parallel(block_M, block_N):
                    dsT_cast[i, j] = qkT[i, j] * (dsT[i, j] - delta[j]) * sm_scale
                T.gemm(dsT_cast, q, dk, policy=T.GemmWarpPolicy.FullRow)

                T.copy(dsT_cast, dsT_shared)
                T.clear(dq)
                T.gemm(dsT_shared, K_shared, dq, transpose_A=True)
                for i, j in T.Parallel(block_N, dim_qk):
                    if k * block_N + i < seq_len:
                        T.atomic_add(dQ[bz, k * block_N + i, bx, j], dq[i, j])

346
347
348
349
            T.copy(dv, dv_shared)
            T.copy(dv_shared, dV[bx % groups, bz, by * block_M:(by + 1) * block_M, bx // groups, :])
            T.copy(dk, dk_shared)
            T.copy(dk, dK[bx % groups, bz, by * block_M:(by + 1) * block_M, bx // groups, :])
350
351
352
353

    return flash_bwd


354
@torch.compile
355
356
357
class _attention(torch.autograd.Function):

    @staticmethod
358
    def forward(ctx, q, k, v, causal, groups=1, use_atomic=True):
359
360
        BATCH, N_CTX, H, D_HEAD_QK = q.shape
        D_HEAD_V = v.shape[-1]
361
        block_M = 128
362
        block_N = 64
363
        mod = flashattn_fwd(BATCH, H, N_CTX, D_HEAD_QK, D_HEAD_V, causal, block_M, block_N, groups)
364
365
366
        o, lse = mod(q, k, v)
        ctx.save_for_backward(q, k, v, o, lse)
        ctx.causal = causal
367
        ctx.use_atomic = use_atomic
368
369
370
371
372
        return o

    @staticmethod
    def backward(ctx, do):
        q, k, v, o, lse = ctx.saved_tensors
373
374
375
        BATCH, N_CTX, H, D_HEAD_QK = q.shape
        HEAD_KV, D_HEAD_V, = v.shape[-2], v.shape[-1]
        groups = H // HEAD_KV
376
377
378
379
380
381
382

        def maybe_contiguous(x):
            if x.stride(-1) != 1:
                return x.contiguous()
            return x

        do, q, k, v, o = [maybe_contiguous(x) for x in (do, q, k, v, o)]
383
        block_M = 128
384
385
386
        block_N = 32
        mod_prep = flashattn_bwd_preprocess(BATCH, H, N_CTX, D_HEAD_V)
        mod_post = flashattn_bwd_postprocess(BATCH, H, N_CTX, D_HEAD_QK)
387
        delta = mod_prep(o, do)
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

        if ctx.use_atomic:
            kernel = flashattn_bwd_atomic_add(
                BATCH,
                H,
                N_CTX,
                D_HEAD_QK,
                D_HEAD_V,
                ctx.causal,
                block_M,
                block_N,
                threads=256,
                num_stages=2,
                groups=groups)
            shape_q = [BATCH, N_CTX, H, D_HEAD_QK]
            shape_k = [BATCH, N_CTX, HEAD_KV, D_HEAD_QK]
            shape_v = [BATCH, N_CTX, HEAD_KV, D_HEAD_V]
            dq = torch.zeros(shape_q, dtype=torch.float32, device=q.device)
            dk = torch.zeros(shape_k, dtype=torch.float32, device=q.device)
            dv = torch.zeros(shape_v, dtype=torch.float32, device=q.device)
            kernel(q, k, v, do, lse, delta, dq, dk, dv)
            dq = mod_post(dq)
            dk = dk.to(torch.float16)
            dv = dv.to(torch.float16)
        else:
            kernel = flashattn_bwd_split(
                BATCH,
                H,
                N_CTX,
                D_HEAD_QK,
                D_HEAD_V,
                ctx.causal,
                block_M,
                block_N,
                threads=256,
                num_stages=2,
                groups=groups)
            shape_q = [BATCH, N_CTX, H, D_HEAD_QK]
            shape_k = [groups, BATCH, N_CTX, HEAD_KV, D_HEAD_QK]  # sum after kernel
            shape_v = [groups, BATCH, N_CTX, HEAD_KV, D_HEAD_V]  # sum after kernel
            dq = torch.zeros(shape_q, dtype=torch.float32, device=q.device)
            dk = torch.empty(shape_k, dtype=torch.float16, device=q.device)
            dv = torch.empty(shape_v, dtype=torch.float16, device=q.device)
            kernel(q, k, v, do, lse, delta, dq, dk, dv)
            dq = mod_post(dq)
            dk, dv = dk.sum(0), dv.sum(0)

        return dq, dk, dv, None, None, None
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465


attention = _attention.apply


def ref_program(Q, K, V, is_causal, groups=1):
    # Q: [B, T, HQ, D_QK]
    # K: [B, T, HK, D_QK]
    # V: [B, T, HV, D_V]
    # HQ = HKV * groups
    assert Q.size(2) == K.size(
        2) * groups, f"Q.size(2): {Q.size(2)}, K.size(2): {K.size(2)}, groups: {groups}"
    assert Q.size(2) == V.size(
        2) * groups, f"Q.size(2): {Q.size(2)}, V.size(2): {V.size(2)}, groups: {groups}"

    dim_qk = Q.size(-1)
    K = K.repeat_interleave(groups, dim=2)
    V = V.repeat_interleave(groups, dim=2)
    scores = torch.einsum('bqhd,bkhd->bhqk', Q, K)
    scores = scores / torch.sqrt(torch.tensor(dim_qk, dtype=scores.dtype))
    if is_causal:
        seq_len = Q.size(1)
        mask = torch.tril(torch.ones(seq_len, seq_len, device=scores.device))
        mask = mask.unsqueeze(0).unsqueeze(0)
        scores = scores.masked_fill(mask == 0, float('-inf'))
    attention_weights = F.softmax(scores, dim=-1)
    output = torch.einsum('bhqk,bkhd->bqhd', attention_weights, V)
    return output


466
def main(BATCH: int = 1,
467
         H: int = 32,
468
         N_CTX: int = 256,
469
470
471
         D_HEAD_QK: int = 192,
         D_HEAD_V: int = 128,
         groups: int = 16,
472
473
         causal: bool = False,
         use_atomic: bool = True):
474
475
476
    flops_per_qk = 2.0 * BATCH * H * N_CTX * N_CTX * D_HEAD_QK
    flops_per_v = 2.0 * BATCH * H * N_CTX * N_CTX * D_HEAD_V
    total_flops = 3 * flops_per_qk + 2 * flops_per_v
477
    if causal:
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
        total_flops *= 0.5
    Q = (
        torch.empty(BATCH, N_CTX, H, D_HEAD_QK, dtype=torch.half,
                    device="cuda").normal_().requires_grad_())

    head_kv = H // groups
    K = (
        torch.empty(BATCH, N_CTX, head_kv, D_HEAD_QK, dtype=torch.half,
                    device="cuda").normal_().requires_grad_())
    V = (
        torch.empty(BATCH, N_CTX, head_kv, D_HEAD_V, dtype=torch.half,
                    device="cuda").normal_().requires_grad_())
    dO = (
        torch.empty(BATCH, N_CTX, H, D_HEAD_V, dtype=torch.half,
                    device="cuda").normal_().requires_grad_())
493
    O = attention(Q, K, V, causal, groups, use_atomic)
494
495
496
497
498
    O.backward(dO, retain_graph=True)
    dQ, Q.grad = Q.grad.clone(), None
    dK, K.grad = K.grad.clone(), None
    dV, V.grad = V.grad.clone(), None

499
    O_ref = ref_program(Q, K, V, causal, groups)
500
501
502
503
504
    O_ref.backward(dO, retain_graph=True)
    dQ_ref, Q.grad = Q.grad.clone(), None
    dK_ref, K.grad = K.grad.clone(), None
    dV_ref, V.grad = V.grad.clone(), None

505
    torch.testing.assert_close(O, O_ref, rtol=1e-2, atol=1e-2)
506
    torch.testing.assert_close(dV, dV_ref, rtol=1e-2, atol=1e-2)
507
508
    torch.testing.assert_close(dK, dK_ref, rtol=1e-2, atol=1e-2)
    torch.testing.assert_close(dQ, dQ_ref, rtol=1e-2, atol=1e-2)
509
    print('All checks passed.✅')
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524

    def run():
        O_ref.backward(dO, retain_graph=True)

    def run1():
        O.backward(dO, retain_graph=True)

    from tilelang.profiler import do_bench

    latency = do_bench(run, warmup=500)
    print("torch: {:.2f} ms".format(latency))
    print("torch: {:.2f} TFlops".format(total_flops / latency * 1e-9))
    latency = do_bench(run1, warmup=500)
    print("tilelang: {:.2f} ms".format(latency))
    print("tilelang: {:.2f} TFlops".format(total_flops / latency * 1e-9))
525
526
527
528
529
530
531
532
533


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch', type=int, default=8, help='Batch size')
    parser.add_argument('--h', type=int, default=32, help='Number of heads')
    parser.add_argument('--n_ctx', type=int, default=1024, help='Context size')
    parser.add_argument('--d_head_qk', type=int, default=192, help='Head dimension for Q/K')
    parser.add_argument('--d_head_v', type=int, default=128, help='Head dimension for V')
534
    parser.add_argument('--causal', action='store_true', help='Causal flag')
535
    parser.add_argument('--groups', type=int, default=16, help='groups')
536
537
538
539
    parser.add_argument(
        '--use_atomic', action='store_true', default=False, help='Use atomic add for dK/dV')
    parser.add_argument(
        '--use_split', action='store_true', default=False, help='Use split for dK/dV')
540
    args = parser.parse_args()
541
542
543
544
545
546
547
548
549
550
551
552

    # Handle backward compatibility and logic
    if args.use_split:
        use_atomic = False
    elif args.use_atomic:
        use_atomic = True
    else:
        # Default: use atomic
        use_atomic = True

    main(args.batch, args.h, args.n_ctx, args.d_head_qk, args.d_head_v, args.groups, args.causal,
         use_atomic)