example_mha_sink_fwd_bhsd.py 12.8 KB
Newer Older
1
2
3
4
5
6
7
# Modified from tilelang/examples/flash_attention/example_mha_fwd_bhsd.py

import torch
import tilelang
from tilelang.autotuner import autotune
from tilelang.profiler import do_bench
import tilelang.language as T
8
from tilelang.layout import make_swizzled_layout
9
10
import itertools
import argparse
11
from typing import Optional
12
13
14
15
16
17
18
19
20


def get_configs():
    iter_params = dict(block_M=[128], block_N=[128], num_stages=[0, 1, 2], threads=[128, 256])
    return [dict(zip(iter_params, values)) for values in itertools.product(*iter_params.values())]


@autotune(configs=get_configs(), warmup=500, rep=100)
@tilelang.jit(
21
22
    out_idx=[3],
    pass_configs={
23
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
24
25
    },
)
26
def flashattn(
27
28
29
30
31
32
33
34
35
36
37
38
39
    batch,
    heads,
    seq_q,
    seq_kv,
    dim,
    window_size=None,  # None for full attention
    sm_scale=None,
    block_M=64,
    block_N=64,
    num_stages=1,
    threads=128,
    dtype: str = "float16",
):
40
41
42
    if window_size is not None:
        assert window_size % block_N == 0, "window_size must be divisible by block_N"

43
    if sm_scale is None:
44
        sm_scale = (1.0 / dim) ** 0.5
45
    scale = sm_scale * 1.44269504  # log2(e)
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
    q_shape = [batch, heads, seq_q, dim]
    kv_shape = [batch, heads, seq_kv, dim]
    accum_dtype = "float"

    past_len = seq_kv - seq_q
    assert past_len >= 0, "seq_kv must be greater than or equal to seq_q"

    @T.macro
    def MMA0(
        K: T.Tensor(kv_shape, dtype),
        Q_shared: T.SharedBuffer([block_M, dim], dtype),
        K_shared: T.SharedBuffer([block_N, dim], dtype),
        acc_s: T.FragmentBuffer([block_M, block_N], accum_dtype),
        k: T.int32,
        bx: T.int32,
        by: T.int32,
        bz: T.int32,
    ):
64
        T.copy(K[bz, by, k * block_N : (k + 1) * block_N, :], K_shared)
65
66
67
68
        for i, j in T.Parallel(block_M, block_N):
            q_idx = bx * block_M + i + past_len
            k_idx = k * block_N + j
            if window_size is not None:
69
                acc_s[i, j] = T.if_then_else(q_idx >= k_idx and q_idx < k_idx + window_size, 0, -T.infinity(acc_s.dtype))
70
71
72
73
74
75
76
77
78
79
80
81
82
83
            else:
                acc_s[i, j] = T.if_then_else(q_idx >= k_idx, 0, -T.infinity(acc_s.dtype))
        T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)

    @T.macro
    def MMA1(
        V: T.Tensor(kv_shape, dtype),
        V_shared: T.SharedBuffer([block_M, dim], dtype),
        acc_s_cast: T.FragmentBuffer([block_M, block_N], dtype),
        acc_o: T.FragmentBuffer([block_M, dim], accum_dtype),
        k: T.int32,
        by: T.int32,
        bz: T.int32,
    ):
84
        T.copy(V[bz, by, k * block_N : (k + 1) * block_N, :], V_shared)
85
86
87
88
        T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)

    @T.macro
    def Softmax(
89
90
91
92
93
94
95
        acc_s: T.FragmentBuffer([block_M, block_N], accum_dtype),
        acc_s_cast: T.FragmentBuffer([block_M, block_N], dtype),
        scores_max: T.FragmentBuffer([block_M], accum_dtype),
        scores_max_prev: T.FragmentBuffer([block_M], accum_dtype),
        scores_scale: T.FragmentBuffer([block_M], accum_dtype),
        scores_sum: T.FragmentBuffer([block_M], accum_dtype),
        logsum: T.FragmentBuffer([block_M], accum_dtype),
96
97
98
99
    ):
        T.copy(scores_max, scores_max_prev)
        T.fill(scores_max, -T.infinity(accum_dtype))
        T.reduce_max(acc_s, scores_max, dim=1, clear=False)
100
101
        for i in T.Parallel(block_M):
            scores_max[i] = T.max(scores_max[i], scores_max_prev[i])
102
103
104
105
106
        # To do causal softmax, we need to set the scores_max to 0 if it is -inf
        # This process is called Check_inf in FlashAttention3 code, and it only need to be done
        # NOTE(wt): check_inf is necessary for sliding window attention.
        for i in T.Parallel(block_M):
            if window_size is not None:
107
                scores_max[i] = T.if_then_else(scores_max[i] == -T.infinity(accum_dtype), 0, scores_max[i])
108
109
110
111
112
113
114
115
116
117
118
119
120
121
            scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)

        for i, j in T.Parallel(block_M, block_N):
            # Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
            # max * log_2(e)) This allows the compiler to use the ffma
            # instruction instead of fadd and fmul separately.
            acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
        T.reduce_sum(acc_s, scores_sum, dim=1)
        for i in T.Parallel(block_M):
            logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
        T.copy(acc_s, acc_s_cast)

    @T.macro
    def Rescale(
122
123
        acc_o: T.FragmentBuffer([block_M, dim], accum_dtype),
        scores_scale: T.FragmentBuffer([block_M], accum_dtype),
124
125
126
127
128
129
    ):
        for i, j in T.Parallel(block_M, dim):
            acc_o[i, j] *= scores_scale[i]

    @T.prim_func
    def main(
130
131
132
133
134
        Q: T.Tensor(q_shape, dtype),
        K: T.Tensor(kv_shape, dtype),
        V: T.Tensor(kv_shape, dtype),
        Output: T.Tensor(q_shape, dtype),
        Sinks: T.Tensor([heads], dtype),
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
    ):
        with T.Kernel(T.ceildiv(seq_q, block_M), heads, batch, threads=threads) as (bx, by, bz):
            Q_shared = T.alloc_shared([block_M, dim], dtype)
            K_shared = T.alloc_shared([block_N, dim], dtype)
            V_shared = T.alloc_shared([block_N, dim], dtype)
            O_shared = T.alloc_shared([block_M, dim], dtype)
            acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
            acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
            acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
            scores_max = T.alloc_fragment([block_M], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
            scores_scale = T.alloc_fragment([block_M], accum_dtype)
            scores_sum = T.alloc_fragment([block_M], accum_dtype)
            logsum = T.alloc_fragment([block_M], accum_dtype)
            sinks = T.alloc_fragment([block_M], dtype)

151
152
153
154
155
156
157
158
            T.annotate_layout(
                {
                    Q_shared: make_swizzled_layout(Q_shared),
                    K_shared: make_swizzled_layout(K_shared),
                    V_shared: make_swizzled_layout(V_shared),
                    O_shared: make_swizzled_layout(O_shared),
                }
            )
159

160
            T.copy(Q[bz, by, bx * block_M : (bx + 1) * block_M, :], Q_shared)
161
162
163
164
165
166
            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))
            for i in T.Parallel(block_M):
                sinks[i] = Sinks[by]

167
            end = T.min(T.ceildiv(seq_kv, block_N), T.ceildiv((bx + 1) * block_M + past_len, block_N))
168

169
            start = T.max(0, (bx * block_M + past_len - window_size) // block_N) if window_size is not None else 0
170

171
            for k in T.Pipelined(start, end, num_stages=num_stages):
172
                MMA0(K, Q_shared, K_shared, acc_s, k, bx, by, bz)
173
                Softmax(acc_s, acc_s_cast, scores_max, scores_max_prev, scores_scale, scores_sum, logsum)
174
175
176
                Rescale(acc_o, scores_scale)
                MMA1(V, V_shared, acc_s_cast, acc_o, k, by, bz)
            for i in T.Parallel(block_M):
177
                logsum[i] += T.exp2(sinks[i] * 1.44269504 - scores_max[i] * scale)  # The only change for attention sink
178
179
180
            for i, j in T.Parallel(block_M, dim):
                acc_o[i, j] /= logsum[i]
            T.copy(acc_o, O_shared)
181
            T.copy(O_shared, Output[bz, by, bx * block_M : (bx + 1) * block_M, :])
182
183
184
185
186

    return main


# Modified from https://github.com/openai/gpt-oss/blob/main/gpt_oss/triton/attention.py
187
188
189
190
191
192
193
194
195
def ref_program(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    sinks: torch.Tensor,
    sliding_window: Optional[int] = None,
    dtype: torch.dtype = torch.float16,
) -> torch.Tensor:
    query = query.transpose(1, 2).contiguous().unsqueeze(3)  # align with the original function's interface
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
    key = key.transpose(1, 2).contiguous()
    value = value.transpose(1, 2).contiguous()

    batch_size, num_queries, num_key_value_heads, num_key_value_groups, head_dim = query.shape
    batch_size, num_keys, num_key_value_heads, head_dim = key.shape
    start_q = num_keys - num_queries

    sm_scale: float = 1.0 / head_dim**0.5

    sinks = sinks.view(1, num_key_value_heads, num_key_value_groups, 1, 1).float()
    key = key.unsqueeze(3)
    value = value.unsqueeze(3)

    pos_keys = torch.arange(num_keys, device=query.device)
    pos_queries = torch.arange(num_queries, device=query.device) + start_q
    mask = pos_keys[None, :] > pos_queries[:, None]
    mask = mask.float().masked_fill(mask, float("-inf"))

    if sliding_window:
        too_old = pos_keys[None, :] < (pos_queries[:, None] - sliding_window + 1)
        mask.masked_fill_(too_old, float("-inf"))

    logits = torch.einsum("bqhmd,bkhmd->bhmqk", query.float(), key.float()) * sm_scale
    logits = logits + mask[None, None, None, :, :]

    logits_max = torch.max(logits, dim=-1, keepdim=True).values
    logits_or_sinks_max = torch.maximum(sinks, logits_max)
    sinks = torch.exp(sinks - logits_or_sinks_max)
    unnormalized_scores = torch.exp(logits - logits_or_sinks_max)
    normalizer = unnormalized_scores.sum(dim=-1, keepdim=True) + sinks
    scores = unnormalized_scores / normalizer

    output = torch.einsum("bhmqk,bkhmd->bqhmd", scores, value.float())

230
    output = output.reshape(batch_size, num_queries, num_key_value_heads * num_key_value_groups, head_dim).to(dtype)
231
232
233
    return output.transpose(1, 2).contiguous()


234
235
236
237
238
def gen_inputs(B, H, Sq, Skv, D, dtype=torch.float16) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
    query = torch.randn([B, H, Sq, D], dtype=dtype, device="cuda")
    key = torch.randn([B, H, Skv, D], dtype=dtype, device="cuda")
    value = torch.randn([B, H, Skv, D], dtype=dtype, device="cuda")
    sinks = torch.randn([H], dtype=dtype, device="cuda")
239
240
241
    return query, key, value, sinks


242
243
244
245
246
247
248
249
250
251
def main(
    batch: int = 1,
    heads: int = 1,
    seq_q: int = 256,
    seq_kv: int = 256,
    dim: int = 128,
    window_size: Optional[int] = None,
    dtype: str = "float16",
    tune: bool = False,
):
252
    torch_dtype = {"float16": torch.float16, "bfloat16": torch.bfloat16}[dtype]
253
    if window_size is not None:
254
        print("Using sliding window attention.")
255
        assert window_size <= seq_q
256
        flops_per_matmul = 2.0 * batch * heads * min(window_size, seq_kv // 2) * seq_q * dim  # just a rough estimation
257
    else:
258
        print("Using full attention.")
259
260
261
262
        flops_per_matmul = 2.0 * batch * heads * seq_q * seq_kv * dim * 0.5
    total_flops = 2 * flops_per_matmul

    if tune:
263
        kernel = flashattn(batch, heads, seq_q, seq_kv, dim, window_size, dtype=dtype)
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
        print(f"Best latency: {kernel.latency}")
        print(f"Best TFlops: {total_flops / kernel.latency * 1e-9}")
        print(f"Best config: {kernel.config}")
    else:
        block_M = 128
        block_N = 128
        num_stages = 2
        threads = 256
        print(f"{block_M=}, {block_N=}, {num_stages=}, {threads=}")

        kernel = flashattn(
            batch,
            heads,
            seq_q,
            seq_kv,
            dim,
            window_size,
            block_M=block_M,
            block_N=block_N,
            num_stages=num_stages,
284
            threads=threads,
285
286
            dtype=dtype,
        )
287

288
        Q, K, V, sinks = gen_inputs(batch, heads, seq_q, seq_kv, dim, dtype=torch_dtype)
289
290

        torch.testing.assert_close(
291
292
            kernel(Q, K, V, sinks), ref_program(Q, K, V, sinks, window_size, dtype=torch_dtype), rtol=1e-2, atol=1e-2
        )
293
294
        print("All checks passed.✅")

295
        latency = do_bench(lambda: ref_program(Q, K, V, sinks, window_size, dtype=torch_dtype), warmup=500)
296
297
298
299
300
301
302
303
304
        print("Ref: {:.2f} ms".format(latency))
        print("Ref: {:.2f} TFlops".format(total_flops / latency * 1e-9))
        latency = do_bench(lambda: kernel(Q, K, V, sinks), warmup=500)
        print("Tilelang: {:.2f} ms".format(latency))
        print("Tilelang: {:.2f} TFlops".format(total_flops / latency * 1e-9))


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
305
306
307
308
309
310
311
312
    parser.add_argument("--batch", type=int, default=8, help="batch size")
    parser.add_argument("--heads", type=int, default=32, help="heads")
    parser.add_argument("--seq_q", type=int, default=4096, help="sequence length of query")
    parser.add_argument("--seq_kv", type=int, default=4096, help="sequence length of key/value")
    parser.add_argument("--dim", type=int, default=128, help="dim")
    parser.add_argument("--window_size", type=int, default=None, help="window size (default: None, which means full attention)")
    parser.add_argument("--dtype", type=str, default="float16", help="dtype, can be float16 or bfloat16")
    parser.add_argument("--tune", action="store_true", help="tune")
313
    args = parser.parse_args()
314
    main(args.batch, args.heads, args.seq_q, args.seq_kv, args.dim, args.window_size, args.dtype, args.tune)