# Modified from tilelang/examples/flash_attention/example_mha_fwd_bhsd.py import torch import tilelang from tilelang.autotuner import autotune from tilelang.profiler import do_bench import tilelang.language as T from tilelang.layout import make_swizzled_layout import itertools import argparse from typing import Optional def get_configs(): iter_params = dict(block_M=[128], block_N=[128], num_stages=[0, 1, 2], threads=[128, 256]) return [dict(zip(iter_params, values)) for values in itertools.product(*iter_params.values())] @autotune(configs=get_configs(), warmup=500, rep=100) @tilelang.jit( out_idx=[3], pass_configs={ tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True, }, ) def flashattn( batch, heads, seq_q, seq_kv, dim, window_size=None, # None for full attention sm_scale=None, block_M=64, block_N=64, num_stages=1, threads=128, dtype: str = "float16", ): if window_size is not None: assert window_size % block_N == 0, "window_size must be divisible by block_N" if sm_scale is None: sm_scale = (1.0 / dim) ** 0.5 scale = sm_scale * 1.44269504 # log2(e) q_shape = [batch, heads, seq_q, dim] kv_shape = [batch, heads, seq_kv, dim] accum_dtype = "float" past_len = seq_kv - seq_q assert past_len >= 0, "seq_kv must be greater than or equal to seq_q" @T.macro def MMA0( K: T.Tensor(kv_shape, dtype), Q_shared: T.SharedBuffer([block_M, dim], dtype), K_shared: T.SharedBuffer([block_N, dim], dtype), acc_s: T.FragmentBuffer([block_M, block_N], accum_dtype), k: T.int32, bx: T.int32, by: T.int32, bz: T.int32, ): T.copy(K[bz, by, k * block_N : (k + 1) * block_N, :], K_shared) for i, j in T.Parallel(block_M, block_N): q_idx = bx * block_M + i + past_len k_idx = k * block_N + j if window_size is not None: acc_s[i, j] = T.if_then_else(q_idx >= k_idx and q_idx < k_idx + window_size, 0, -T.infinity(acc_s.dtype)) else: acc_s[i, j] = T.if_then_else(q_idx >= k_idx, 0, -T.infinity(acc_s.dtype)) T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow) @T.macro def MMA1( V: T.Tensor(kv_shape, dtype), V_shared: T.SharedBuffer([block_M, dim], dtype), acc_s_cast: T.FragmentBuffer([block_M, block_N], dtype), acc_o: T.FragmentBuffer([block_M, dim], accum_dtype), k: T.int32, by: T.int32, bz: T.int32, ): T.copy(V[bz, by, k * block_N : (k + 1) * block_N, :], V_shared) T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow) @T.macro def Softmax( acc_s: T.FragmentBuffer([block_M, block_N], accum_dtype), acc_s_cast: T.FragmentBuffer([block_M, block_N], dtype), scores_max: T.FragmentBuffer([block_M], accum_dtype), scores_max_prev: T.FragmentBuffer([block_M], accum_dtype), scores_scale: T.FragmentBuffer([block_M], accum_dtype), scores_sum: T.FragmentBuffer([block_M], accum_dtype), logsum: T.FragmentBuffer([block_M], accum_dtype), ): T.copy(scores_max, scores_max_prev) T.fill(scores_max, -T.infinity(accum_dtype)) T.reduce_max(acc_s, scores_max, dim=1, clear=False) for i in T.Parallel(block_M): scores_max[i] = T.max(scores_max[i], scores_max_prev[i]) # To do causal softmax, we need to set the scores_max to 0 if it is -inf # This process is called Check_inf in FlashAttention3 code, and it only need to be done # NOTE(wt): check_inf is necessary for sliding window attention. for i in T.Parallel(block_M): if window_size is not None: scores_max[i] = T.if_then_else(scores_max[i] == -T.infinity(accum_dtype), 0, scores_max[i]) scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale) for i, j in T.Parallel(block_M, block_N): # Instead of computing exp(x - max), we compute exp2(x * log_2(e) - # max * log_2(e)) This allows the compiler to use the ffma # instruction instead of fadd and fmul separately. acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale) T.reduce_sum(acc_s, scores_sum, dim=1) for i in T.Parallel(block_M): logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i] T.copy(acc_s, acc_s_cast) @T.macro def Rescale( acc_o: T.FragmentBuffer([block_M, dim], accum_dtype), scores_scale: T.FragmentBuffer([block_M], accum_dtype), ): for i, j in T.Parallel(block_M, dim): acc_o[i, j] *= scores_scale[i] @T.prim_func def main( Q: T.Tensor(q_shape, dtype), K: T.Tensor(kv_shape, dtype), V: T.Tensor(kv_shape, dtype), Output: T.Tensor(q_shape, dtype), Sinks: T.Tensor([heads], dtype), ): with T.Kernel(T.ceildiv(seq_q, block_M), heads, batch, threads=threads) as (bx, by, bz): Q_shared = T.alloc_shared([block_M, dim], dtype) K_shared = T.alloc_shared([block_N, dim], dtype) V_shared = T.alloc_shared([block_N, dim], dtype) O_shared = T.alloc_shared([block_M, dim], dtype) acc_s = T.alloc_fragment([block_M, block_N], accum_dtype) acc_s_cast = T.alloc_fragment([block_M, block_N], dtype) acc_o = T.alloc_fragment([block_M, dim], accum_dtype) scores_max = T.alloc_fragment([block_M], accum_dtype) scores_max_prev = T.alloc_fragment([block_M], accum_dtype) scores_scale = T.alloc_fragment([block_M], accum_dtype) scores_sum = T.alloc_fragment([block_M], accum_dtype) logsum = T.alloc_fragment([block_M], accum_dtype) sinks = T.alloc_fragment([block_M], dtype) T.annotate_layout( { Q_shared: make_swizzled_layout(Q_shared), K_shared: make_swizzled_layout(K_shared), V_shared: make_swizzled_layout(V_shared), O_shared: make_swizzled_layout(O_shared), } ) T.copy(Q[bz, by, bx * block_M : (bx + 1) * block_M, :], Q_shared) T.fill(acc_o, 0) T.fill(logsum, 0) T.fill(scores_max, -T.infinity(accum_dtype)) for i in T.Parallel(block_M): sinks[i] = Sinks[by] end = T.min(T.ceildiv(seq_kv, block_N), T.ceildiv((bx + 1) * block_M + past_len, block_N)) start = T.max(0, (bx * block_M + past_len - window_size) // block_N) if window_size is not None else 0 for k in T.Pipelined(start, end, num_stages=num_stages): MMA0(K, Q_shared, K_shared, acc_s, k, bx, by, bz) Softmax(acc_s, acc_s_cast, scores_max, scores_max_prev, scores_scale, scores_sum, logsum) Rescale(acc_o, scores_scale) MMA1(V, V_shared, acc_s_cast, acc_o, k, by, bz) for i in T.Parallel(block_M): logsum[i] += T.exp2(sinks[i] * 1.44269504 - scores_max[i] * scale) # The only change for attention sink for i, j in T.Parallel(block_M, dim): acc_o[i, j] /= logsum[i] T.copy(acc_o, O_shared) T.copy(O_shared, Output[bz, by, bx * block_M : (bx + 1) * block_M, :]) return main # Modified from https://github.com/openai/gpt-oss/blob/main/gpt_oss/triton/attention.py def ref_program( query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, sinks: torch.Tensor, sliding_window: Optional[int] = None, dtype: torch.dtype = torch.float16, ) -> torch.Tensor: query = query.transpose(1, 2).contiguous().unsqueeze(3) # align with the original function's interface key = key.transpose(1, 2).contiguous() value = value.transpose(1, 2).contiguous() batch_size, num_queries, num_key_value_heads, num_key_value_groups, head_dim = query.shape batch_size, num_keys, num_key_value_heads, head_dim = key.shape start_q = num_keys - num_queries sm_scale: float = 1.0 / head_dim**0.5 sinks = sinks.view(1, num_key_value_heads, num_key_value_groups, 1, 1).float() key = key.unsqueeze(3) value = value.unsqueeze(3) pos_keys = torch.arange(num_keys, device=query.device) pos_queries = torch.arange(num_queries, device=query.device) + start_q mask = pos_keys[None, :] > pos_queries[:, None] mask = mask.float().masked_fill(mask, float("-inf")) if sliding_window: too_old = pos_keys[None, :] < (pos_queries[:, None] - sliding_window + 1) mask.masked_fill_(too_old, float("-inf")) logits = torch.einsum("bqhmd,bkhmd->bhmqk", query.float(), key.float()) * sm_scale logits = logits + mask[None, None, None, :, :] logits_max = torch.max(logits, dim=-1, keepdim=True).values logits_or_sinks_max = torch.maximum(sinks, logits_max) sinks = torch.exp(sinks - logits_or_sinks_max) unnormalized_scores = torch.exp(logits - logits_or_sinks_max) normalizer = unnormalized_scores.sum(dim=-1, keepdim=True) + sinks scores = unnormalized_scores / normalizer output = torch.einsum("bhmqk,bkhmd->bqhmd", scores, value.float()) output = output.reshape(batch_size, num_queries, num_key_value_heads * num_key_value_groups, head_dim).to(dtype) return output.transpose(1, 2).contiguous() def gen_inputs(B, H, Sq, Skv, D, dtype=torch.float16) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: query = torch.randn([B, H, Sq, D], dtype=dtype, device="cuda") key = torch.randn([B, H, Skv, D], dtype=dtype, device="cuda") value = torch.randn([B, H, Skv, D], dtype=dtype, device="cuda") sinks = torch.randn([H], dtype=dtype, device="cuda") return query, key, value, sinks def main( batch: int = 1, heads: int = 1, seq_q: int = 256, seq_kv: int = 256, dim: int = 128, window_size: Optional[int] = None, dtype: str = "float16", tune: bool = False, ): torch_dtype = {"float16": torch.float16, "bfloat16": torch.bfloat16}[dtype] if window_size is not None: print("Using sliding window attention.") assert window_size <= seq_q flops_per_matmul = 2.0 * batch * heads * min(window_size, seq_kv // 2) * seq_q * dim # just a rough estimation else: print("Using full attention.") flops_per_matmul = 2.0 * batch * heads * seq_q * seq_kv * dim * 0.5 total_flops = 2 * flops_per_matmul if tune: kernel = flashattn(batch, heads, seq_q, seq_kv, dim, window_size, dtype=dtype) print(f"Best latency: {kernel.latency}") print(f"Best TFlops: {total_flops / kernel.latency * 1e-9}") print(f"Best config: {kernel.config}") else: block_M = 128 block_N = 128 num_stages = 2 threads = 256 print(f"{block_M=}, {block_N=}, {num_stages=}, {threads=}") kernel = flashattn( batch, heads, seq_q, seq_kv, dim, window_size, block_M=block_M, block_N=block_N, num_stages=num_stages, threads=threads, dtype=dtype, ) Q, K, V, sinks = gen_inputs(batch, heads, seq_q, seq_kv, dim, dtype=torch_dtype) torch.testing.assert_close( kernel(Q, K, V, sinks), ref_program(Q, K, V, sinks, window_size, dtype=torch_dtype), rtol=1e-2, atol=1e-2 ) print("All checks passed.✅") latency = do_bench(lambda: ref_program(Q, K, V, sinks, window_size, dtype=torch_dtype), warmup=500) print("Ref: {:.2f} ms".format(latency)) print("Ref: {:.2f} TFlops".format(total_flops / latency * 1e-9)) latency = do_bench(lambda: kernel(Q, K, V, sinks), warmup=500) print("Tilelang: {:.2f} ms".format(latency)) print("Tilelang: {:.2f} TFlops".format(total_flops / latency * 1e-9)) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--batch", type=int, default=8, help="batch size") parser.add_argument("--heads", type=int, default=32, help="heads") parser.add_argument("--seq_q", type=int, default=4096, help="sequence length of query") parser.add_argument("--seq_kv", type=int, default=4096, help="sequence length of key/value") parser.add_argument("--dim", type=int, default=128, help="dim") parser.add_argument("--window_size", type=int, default=None, help="window size (default: None, which means full attention)") parser.add_argument("--dtype", type=str, default="float16", help="dtype, can be float16 or bfloat16") parser.add_argument("--tune", action="store_true", help="tune") args = parser.parse_args() main(args.batch, args.heads, args.seq_q, args.seq_kv, args.dim, args.window_size, args.dtype, args.tune)