example_mha_sink_fwd_bhsd.py 12.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# Modified from tilelang/examples/flash_attention/example_mha_fwd_bhsd.py

import torch
import tilelang
from tilelang.autotuner import autotune
from tilelang.profiler import do_bench
import tilelang.language as T
import itertools
import argparse


def get_configs():
    iter_params = dict(block_M=[128], block_N=[128], num_stages=[0, 1, 2], threads=[128, 256])
    return [dict(zip(iter_params, values)) for values in itertools.product(*iter_params.values())]


@autotune(configs=get_configs(), warmup=500, rep=100)
@tilelang.jit(
    out_idx=[3], pass_configs={
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
    })
def flashattn(
        batch,
        heads,
        seq_q,
        seq_kv,
        dim,
        window_size=None,  # None for full attention
        block_M=64,
        block_N=64,
        num_stages=1,
        threads=128):
    if window_size is not None:
        assert window_size % block_N == 0, "window_size must be divisible by block_N"

    scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
    q_shape = [batch, heads, seq_q, dim]
    kv_shape = [batch, heads, seq_kv, dim]
    dtype = "float16"
    accum_dtype = "float"

    past_len = seq_kv - seq_q
    assert past_len >= 0, "seq_kv must be greater than or equal to seq_q"

    @T.macro
    def MMA0(
        K: T.Tensor(kv_shape, dtype),
        Q_shared: T.SharedBuffer([block_M, dim], dtype),
        K_shared: T.SharedBuffer([block_N, dim], dtype),
        acc_s: T.FragmentBuffer([block_M, block_N], accum_dtype),
        k: T.int32,
        bx: T.int32,
        by: T.int32,
        bz: T.int32,
    ):
        T.copy(K[bz, by, k * block_N:(k + 1) * block_N, :], K_shared)
        for i, j in T.Parallel(block_M, block_N):
            q_idx = bx * block_M + i + past_len
            k_idx = k * block_N + j
            if window_size is not None:
                acc_s[i, j] = T.if_then_else(q_idx >= k_idx and q_idx < k_idx + window_size, 0,
                                             -T.infinity(acc_s.dtype))
            else:
                acc_s[i, j] = T.if_then_else(q_idx >= k_idx, 0, -T.infinity(acc_s.dtype))
        T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)

    @T.macro
    def MMA1(
        V: T.Tensor(kv_shape, dtype),
        V_shared: T.SharedBuffer([block_M, dim], dtype),
        acc_s_cast: T.FragmentBuffer([block_M, block_N], dtype),
        acc_o: T.FragmentBuffer([block_M, dim], accum_dtype),
        k: T.int32,
        by: T.int32,
        bz: T.int32,
    ):
        T.copy(V[bz, by, k * block_N:(k + 1) * block_N, :], V_shared)
        T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)

    @T.macro
    def Softmax(
            acc_s: T.FragmentBuffer([block_M, block_N], accum_dtype),
            acc_s_cast: T.FragmentBuffer([block_M, block_N], dtype),
            scores_max: T.FragmentBuffer([block_M], accum_dtype),
            scores_max_prev: T.FragmentBuffer([block_M], accum_dtype),
            scores_scale: T.FragmentBuffer([block_M], accum_dtype),
            scores_sum: T.FragmentBuffer([block_M], accum_dtype),
            logsum: T.FragmentBuffer([block_M], accum_dtype),
    ):
        T.copy(scores_max, scores_max_prev)
        T.fill(scores_max, -T.infinity(accum_dtype))
        T.reduce_max(acc_s, scores_max, dim=1, clear=False)
        # To do causal softmax, we need to set the scores_max to 0 if it is -inf
        # This process is called Check_inf in FlashAttention3 code, and it only need to be done
        # NOTE(wt): check_inf is necessary for sliding window attention.
        for i in T.Parallel(block_M):
            if window_size is not None:
                scores_max[i] = T.if_then_else(scores_max[i] == -T.infinity(accum_dtype), 0,
                                               scores_max[i])
            scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)

        for i, j in T.Parallel(block_M, block_N):
            # Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
            # max * log_2(e)) This allows the compiler to use the ffma
            # instruction instead of fadd and fmul separately.
            acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
        T.reduce_sum(acc_s, scores_sum, dim=1)
        for i in T.Parallel(block_M):
            logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
        T.copy(acc_s, acc_s_cast)

    @T.macro
    def Rescale(
            acc_o: T.FragmentBuffer([block_M, dim], accum_dtype),
            scores_scale: T.FragmentBuffer([block_M], accum_dtype),
    ):
        for i, j in T.Parallel(block_M, dim):
            acc_o[i, j] *= scores_scale[i]

    @T.prim_func
    def main(
            Q: T.Tensor(q_shape, dtype),
            K: T.Tensor(kv_shape, dtype),
            V: T.Tensor(kv_shape, dtype),
            Output: T.Tensor(q_shape, dtype),
            Sinks: T.Tensor([heads], dtype),
    ):
        with T.Kernel(T.ceildiv(seq_q, block_M), heads, batch, threads=threads) as (bx, by, bz):
            Q_shared = T.alloc_shared([block_M, dim], dtype)
            K_shared = T.alloc_shared([block_N, dim], dtype)
            V_shared = T.alloc_shared([block_N, dim], dtype)
            O_shared = T.alloc_shared([block_M, dim], dtype)
            acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
            acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
            acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
            scores_max = T.alloc_fragment([block_M], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
            scores_scale = T.alloc_fragment([block_M], accum_dtype)
            scores_sum = T.alloc_fragment([block_M], accum_dtype)
            logsum = T.alloc_fragment([block_M], accum_dtype)
            sinks = T.alloc_fragment([block_M], dtype)

            T.copy(Q[bz, by, bx * block_M:(bx + 1) * block_M, :], Q_shared)
            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))
            for i in T.Parallel(block_M):
                sinks[i] = Sinks[by]

            end = T.min(
                T.ceildiv(seq_kv, block_N), T.ceildiv((bx + 1) * block_M + past_len, block_N))

            start = T.alloc_local([1], 'int32')
            if window_size is not None:
                start[0] = T.max(0, (bx * block_M + past_len - window_size) // block_N)
            else:
                start[0] = 0

            for k in T.Pipelined(start[0], end, num_stages=num_stages):
                MMA0(K, Q_shared, K_shared, acc_s, k, bx, by, bz)
                Softmax(acc_s, acc_s_cast, scores_max, scores_max_prev, scores_scale, scores_sum,
                        logsum)
                Rescale(acc_o, scores_scale)
                MMA1(V, V_shared, acc_s_cast, acc_o, k, by, bz)
            for i in T.Parallel(block_M):
                logsum[i] += T.exp2(sinks[i] * 1.44269504 -
                                    scores_max[i] * scale)  # The only change for attention sink
            for i, j in T.Parallel(block_M, dim):
                acc_o[i, j] /= logsum[i]
            T.copy(acc_o, O_shared)
            T.copy(O_shared, Output[bz, by, bx * block_M:(bx + 1) * block_M, :])

    return main


# Modified from https://github.com/openai/gpt-oss/blob/main/gpt_oss/triton/attention.py
def ref_program(query: torch.Tensor,
                key: torch.Tensor,
                value: torch.Tensor,
                sinks: torch.Tensor,
                sliding_window: int | None = None) -> torch.Tensor:

    query = query.transpose(1, 2).contiguous().unsqueeze(
        3)  # align with the original function's interface
    key = key.transpose(1, 2).contiguous()
    value = value.transpose(1, 2).contiguous()

    batch_size, num_queries, num_key_value_heads, num_key_value_groups, head_dim = query.shape
    batch_size, num_keys, num_key_value_heads, head_dim = key.shape
    start_q = num_keys - num_queries

    sm_scale: float = 1.0 / head_dim**0.5

    sinks = sinks.view(1, num_key_value_heads, num_key_value_groups, 1, 1).float()
    key = key.unsqueeze(3)
    value = value.unsqueeze(3)

    pos_keys = torch.arange(num_keys, device=query.device)
    pos_queries = torch.arange(num_queries, device=query.device) + start_q
    mask = pos_keys[None, :] > pos_queries[:, None]
    mask = mask.float().masked_fill(mask, float("-inf"))

    if sliding_window:
        too_old = pos_keys[None, :] < (pos_queries[:, None] - sliding_window + 1)
        mask.masked_fill_(too_old, float("-inf"))

    logits = torch.einsum("bqhmd,bkhmd->bhmqk", query.float(), key.float()) * sm_scale
    logits = logits + mask[None, None, None, :, :]

    logits_max = torch.max(logits, dim=-1, keepdim=True).values
    logits_or_sinks_max = torch.maximum(sinks, logits_max)
    sinks = torch.exp(sinks - logits_or_sinks_max)
    unnormalized_scores = torch.exp(logits - logits_or_sinks_max)
    normalizer = unnormalized_scores.sum(dim=-1, keepdim=True) + sinks
    scores = unnormalized_scores / normalizer

    output = torch.einsum("bhmqk,bkhmd->bqhmd", scores, value.float())

    output = output.reshape(batch_size, num_queries, num_key_value_heads * num_key_value_groups,
                            head_dim).to(torch.float16)
    return output.transpose(1, 2).contiguous()


def gen_inputs(B, H, Sq, Skv, D) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
    query = torch.randn([B, H, Sq, D], dtype=torch.float16, device='cuda')
    key = torch.randn([B, H, Skv, D], dtype=torch.float16, device='cuda')
    value = torch.randn([B, H, Skv, D], dtype=torch.float16, device='cuda')
    sinks = torch.zeros([H], dtype=torch.float16, device='cuda')
    return query, key, value, sinks


232
233
234
235
def main(batch: int = 1,
         heads: int = 1,
         seq_q: int = 256,
         seq_kv: int = 256,
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
         dim: int = 128,
         window_size: int | None = None,
         tune: bool = False):
    if window_size is not None:
        print('Using sliding window attention.')
        assert window_size <= seq_q
        flops_per_matmul = 2.0 * batch * heads * min(
            window_size, seq_kv // 2) * seq_q * dim  # just a rough estimation
    else:
        print('Using full attention.')
        flops_per_matmul = 2.0 * batch * heads * seq_q * seq_kv * dim * 0.5
    total_flops = 2 * flops_per_matmul

    if tune:
        kernel = flashattn(batch, heads, seq_q, seq_kv, dim, window_size)
        print(f"Best latency: {kernel.latency}")
        print(f"Best TFlops: {total_flops / kernel.latency * 1e-9}")
        print(f"Best config: {kernel.config}")
    else:
        block_M = 128
        block_N = 128
        num_stages = 2
        threads = 256
        print(f"{block_M=}, {block_N=}, {num_stages=}, {threads=}")

        kernel = flashattn(
            batch,
            heads,
            seq_q,
            seq_kv,
            dim,
            window_size,
            block_M=block_M,
            block_N=block_N,
            num_stages=num_stages,
            threads=threads)

        Q, K, V, sinks = gen_inputs(batch, heads, seq_q, seq_kv, dim)

        torch.testing.assert_close(
            kernel(Q, K, V, sinks), ref_program(Q, K, V, sinks, window_size), rtol=1e-2, atol=1e-2)
        print("All checks passed.✅")

        latency = do_bench(lambda: ref_program(Q, K, V, sinks, window_size), warmup=500)
        print("Ref: {:.2f} ms".format(latency))
        print("Ref: {:.2f} TFlops".format(total_flops / latency * 1e-9))
        latency = do_bench(lambda: kernel(Q, K, V, sinks), warmup=500)
        print("Tilelang: {:.2f} ms".format(latency))
        print("Tilelang: {:.2f} TFlops".format(total_flops / latency * 1e-9))


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch', type=int, default=8, help='batch size')
    parser.add_argument('--heads', type=int, default=32, help='heads')
    parser.add_argument('--seq_q', type=int, default=4096, help='sequence length of query')
    parser.add_argument('--seq_kv', type=int, default=4096, help='sequence length of key/value')
    parser.add_argument('--dim', type=int, default=128, help='dim')
    parser.add_argument(
        '--window_size',
        type=int,
        default=None,
        help='window size (default: None, which means full attention)')
    parser.add_argument('--tune', action='store_true', help='tune')
    args = parser.parse_args()
    main(args.batch, args.heads, args.seq_q, args.seq_kv, args.dim, args.window_size, args.tune)