bloom.py 9.3 KB
Newer Older
1
2
3
import torch
import torch.distributed

4
from typing import List, Optional, Type
5
6
7

from accelerate import init_empty_weights
from safetensors import safe_open
8
9
10
11
12
13
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    AutoConfig,
    PreTrainedTokenizerBase,
)
14
15
16
17
18
19
from transformers.models.bloom.parallel_layers import (
    TensorParallelColumnLinear,
    TensorParallelEmbedding,
    TensorParallelRowLinear,
)

20
from text_generation.models import CausalLM
21
22
from text_generation.models.causal_lm import CausalLMBatch
from text_generation.pb import generate_pb2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from text_generation.utils import (
    initialize_torch_distributed,
    weight_files,
    download_weights,
)

HAS_BITS_AND_BYTES = True
try:
    import bitsandbytes as bnb
    from bitsandbytes.nn import Int8Params
except Exception as e:
    HAS_BITS_AND_BYTES = False


37
38
39
class BloomCausalLMBatch(CausalLMBatch):
    @classmethod
    def from_pb(
40
41
42
43
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        device: torch.device,
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
    ) -> "CausalLMBatch":
        batch = super(BloomCausalLMBatch, cls).from_pb(
            pb=pb, tokenizer=tokenizer, device=device
        )
        batch.keys_head_dim_last = False
        return batch


class BLOOM(CausalLM):
    @property
    def batch_type(self) -> Type[CausalLMBatch]:
        return BloomCausalLMBatch


class BLOOMSharded(BLOOM):
59
60
61
    def __init__(
        self, model_name: str, revision: Optional[str] = None, quantize: bool = False
    ):
62
63
64
        if not model_name.startswith("bigscience/bloom"):
            raise ValueError(f"Model {model_name} is not supported")

65
66
67
        self.process_group, self.rank, self.world_size = initialize_torch_distributed()
        self.master = self.rank == 0
        if torch.cuda.is_available():
68
            device = torch.device(f"cuda:{self.rank}")
69
            dtype = torch.bfloat16
70
        else:
71
            device = torch.device("cpu")
72
73
            dtype = torch.float32

74
75
76
        tokenizer = AutoTokenizer.from_pretrained(
            model_name, revision=revision, padding_side="left"
        )
77
78

        config = AutoConfig.from_pretrained(
79
            model_name, revision=revision, slow_but_exact=False, tp_parallel=True
80
81
82
83
84
        )
        config.pad_token_id = 3

        # Only download weights for small models
        if self.master and model_name == "bigscience/bloom-560m":
85
            download_weights(model_name, revision=revision, extension=".safetensors")
86
87

        torch.distributed.barrier(group=self.process_group)
88
89
90
        filenames = weight_files(
            model_name, revision=revision, extension=".safetensors"
        )
91
92
        if not filenames:
            raise ValueError("No safetensors weights found")
93
94
95
96
97
98
99
100
101

        with init_empty_weights():
            model = AutoModelForCausalLM.from_config(config)

        torch.distributed.barrier(group=self.process_group)
        self.load_weights(
            model,
            filenames,
            quantize=quantize,
102
            device=device,
103
104
105
106
107
            rank=self.rank,
            world_size=self.world_size,
        )
        self.model = model.eval().to(dtype)
        torch.distributed.barrier(group=self.process_group)
108
109
110
111
        super(CausalLM, self).__init__(
            tokenizer=tokenizer,
            device=device,
        )
112
113
114

    @staticmethod
    def load_weights(
115
116
117
118
119
120
        model,
        filenames: List[str],
        quantize: bool,
        device: torch.device,
        rank: int,
        world_size: int,
121
122
123
124
    ):
        parameters = dict(model.named_parameters())
        for file in filenames:
            with safe_open(
125
                file, framework="pt", device=str(device) if not quantize else "cpu"
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
            ) as f:
                for name in f.keys():
                    full_name = f"transformer.{name}"

                    module_name, param_name = full_name.rsplit(".", 1)
                    module = model.get_submodule(module_name)
                    current_tensor = parameters[full_name]

                    slice_ = f.get_slice(name)

                    if isinstance(module, TensorParallelColumnLinear):
                        if param_name == "weight":
                            size = slice_.get_shape()[0]
                            block_size = size // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            tensor = slice_[start:stop]
                        else:
                            size = slice_.get_shape()[0]
                            block_size = size // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            tensor = slice_[start:stop]
                    elif isinstance(module, TensorParallelRowLinear):
                        if param_name == "weight":
                            size = slice_.get_shape()[1]
                            block_size = size // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            tensor = slice_[:, start:stop]
                        else:
                            tensor = slice_[:]
                            # XXX: Hack for Rowlinear to add the bias only once.
                            if rank != 0:
                                tensor = torch.zeros_like(tensor)
                    elif isinstance(module, TensorParallelEmbedding):
                        size = slice_.get_shape()[0]
                        block_size = size // world_size
                        start = rank * block_size
                        stop = (rank + 1) * block_size
                        tensor = slice_[start:stop]
                    else:
                        tensor = slice_[:]

                    if current_tensor.shape != tensor.shape:
                        raise ValueError(
                            f"Name {name} -- Current {current_tensor.shape} and got {tensor.shape}"
                        )

                    tensor = tensor.contiguous()

                    if quantize:
                        if not HAS_BITS_AND_BYTES:
                            raise ImportError(
                                "bitsandbytes is not available on your machine either because it is not installed "
                                "or you don't have a GPU.\n"
                                "You can install it with `pip install bitsandbytes`."
                            )

                        if (
186
187
188
                            type(module)
                            in [TensorParallelRowLinear, TensorParallelColumnLinear]
                            and param_name == "weight"
189
190
                        ):
                            tensor = Int8Params(
191
                                tensor,
192
193
194
195
196
197
198
199
200
201
202
203
204
                                has_fp16_weights=False,
                                requires_grad=False,
                            ).to(device)
                            state = bnb.MatmulLtState()
                            state.threshold = 6.0
                            state.has_fp16_weights = False
                            state.memory_efficient_backward = False
                            state.use_pool = True
                            state.CB = tensor.CB
                            state.SCB = tensor.SCB
                            tensor.CB = None
                            tensor.SCB = None

205
                            def replace_linear(state):
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
                                def linear(input, weight, bias):
                                    out = bnb.matmul(
                                        input,
                                        weight,
                                        state=state,
                                        threshold=state.threshold,
                                        bias=bias,
                                    )

                                    if state.CB is not None:
                                        # we converted 8-bit row major to turing/ampere format
                                        # in the first inference pass
                                        # we no longer need the row-major weight
                                        del state.CB
                                        weight.data = state.CxB

222
                                    return out
223
224
225

                                return linear

226
                            module.linear = replace_linear(state)
227
228
229
230
231
232
233
234

                        else:
                            tensor = tensor.to(device)

                    module._parameters[param_name] = tensor
                    if name == "word_embeddings.weight":
                        model.lm_head._parameters["weight"] = tensor

235
236
237
    def forward(
        self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
    ):
238
239
240
        outputs = self.model.forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
241
            position_ids=position_ids,
242
243
244
245
246
            past_key_values=past_key_values,
            use_cache=True,
        )

        # Logits are sharded, so we need to gather them
OlivierDehaene's avatar
OlivierDehaene committed
247
248
249
        logits = [torch.empty_like(outputs.logits) for _ in range(self.world_size)]
        torch.distributed.all_gather(logits, outputs.logits, group=self.process_group)
        logits = torch.cat(logits, dim=2)
250

251
        return logits, outputs.past_key_values