bloom.py 9.13 KB
Newer Older
1
2
3
import torch
import torch.distributed

4
from typing import List, Optional, Type
5
6
7

from accelerate import init_empty_weights
from safetensors import safe_open
8
9
10
11
12
13
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    AutoConfig,
    PreTrainedTokenizerBase,
)
14
15
16
17
18
19
from transformers.models.bloom.parallel_layers import (
    TensorParallelColumnLinear,
    TensorParallelEmbedding,
    TensorParallelRowLinear,
)

20
from text_generation.models import CausalLM
21
22
from text_generation.models.causal_lm import CausalLMBatch
from text_generation.pb import generate_pb2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from text_generation.utils import (
    initialize_torch_distributed,
    weight_files,
    download_weights,
)

HAS_BITS_AND_BYTES = True
try:
    import bitsandbytes as bnb
    from bitsandbytes.nn import Int8Params
except Exception as e:
    HAS_BITS_AND_BYTES = False


37
38
39
class BloomCausalLMBatch(CausalLMBatch):
    @classmethod
    def from_pb(
40
41
42
43
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        device: torch.device,
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
    ) -> "CausalLMBatch":
        batch = super(BloomCausalLMBatch, cls).from_pb(
            pb=pb, tokenizer=tokenizer, device=device
        )
        batch.keys_head_dim_last = False
        return batch


class BLOOM(CausalLM):
    @property
    def batch_type(self) -> Type[CausalLMBatch]:
        return BloomCausalLMBatch


class BLOOMSharded(BLOOM):
59
    def __init__(self, model_name: str, quantize: bool = False):
60
61
62
        if not model_name.startswith("bigscience/bloom"):
            raise ValueError(f"Model {model_name} is not supported")

63
64
65
        self.process_group, self.rank, self.world_size = initialize_torch_distributed()
        self.master = self.rank == 0
        if torch.cuda.is_available():
66
            device = torch.device(f"cuda:{self.rank}")
67
            dtype = torch.bfloat16
68
        else:
69
            device = torch.device("cpu")
70
71
            dtype = torch.float32

72
        tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
73
74
75
76
77
78
79
80
81
82
83
84

        config = AutoConfig.from_pretrained(
            model_name, slow_but_exact=False, tp_parallel=True
        )
        config.pad_token_id = 3

        # Only download weights for small models
        if self.master and model_name == "bigscience/bloom-560m":
            download_weights(model_name, extension=".safetensors")

        torch.distributed.barrier(group=self.process_group)
        filenames = weight_files(model_name, extension=".safetensors")
85
86
        if not filenames:
            raise ValueError("No safetensors weights found")
87
88
89
90
91
92
93
94
95

        with init_empty_weights():
            model = AutoModelForCausalLM.from_config(config)

        torch.distributed.barrier(group=self.process_group)
        self.load_weights(
            model,
            filenames,
            quantize=quantize,
96
            device=device,
97
98
99
100
101
            rank=self.rank,
            world_size=self.world_size,
        )
        self.model = model.eval().to(dtype)
        torch.distributed.barrier(group=self.process_group)
102
103
104
105
        super(CausalLM, self).__init__(
            tokenizer=tokenizer,
            device=device,
        )
106
107
108

    @staticmethod
    def load_weights(
109
110
111
112
113
114
        model,
        filenames: List[str],
        quantize: bool,
        device: torch.device,
        rank: int,
        world_size: int,
115
116
117
118
    ):
        parameters = dict(model.named_parameters())
        for file in filenames:
            with safe_open(
119
                file, framework="pt", device=str(device) if not quantize else "cpu"
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
            ) as f:
                for name in f.keys():
                    full_name = f"transformer.{name}"

                    module_name, param_name = full_name.rsplit(".", 1)
                    module = model.get_submodule(module_name)
                    current_tensor = parameters[full_name]

                    slice_ = f.get_slice(name)

                    if isinstance(module, TensorParallelColumnLinear):
                        if param_name == "weight":
                            size = slice_.get_shape()[0]
                            block_size = size // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            tensor = slice_[start:stop]
                        else:
                            size = slice_.get_shape()[0]
                            block_size = size // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            tensor = slice_[start:stop]
                    elif isinstance(module, TensorParallelRowLinear):
                        if param_name == "weight":
                            size = slice_.get_shape()[1]
                            block_size = size // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            tensor = slice_[:, start:stop]
                        else:
                            tensor = slice_[:]
                            # XXX: Hack for Rowlinear to add the bias only once.
                            if rank != 0:
                                tensor = torch.zeros_like(tensor)
                    elif isinstance(module, TensorParallelEmbedding):
                        size = slice_.get_shape()[0]
                        block_size = size // world_size
                        start = rank * block_size
                        stop = (rank + 1) * block_size
                        tensor = slice_[start:stop]
                    else:
                        tensor = slice_[:]

                    if current_tensor.shape != tensor.shape:
                        raise ValueError(
                            f"Name {name} -- Current {current_tensor.shape} and got {tensor.shape}"
                        )

                    tensor = tensor.contiguous()

                    if quantize:
                        if not HAS_BITS_AND_BYTES:
                            raise ImportError(
                                "bitsandbytes is not available on your machine either because it is not installed "
                                "or you don't have a GPU.\n"
                                "You can install it with `pip install bitsandbytes`."
                            )

                        if (
180
181
182
                            type(module)
                            in [TensorParallelRowLinear, TensorParallelColumnLinear]
                            and param_name == "weight"
183
184
                        ):
                            tensor = Int8Params(
185
                                tensor,
186
187
188
189
190
191
192
193
194
195
196
197
198
                                has_fp16_weights=False,
                                requires_grad=False,
                            ).to(device)
                            state = bnb.MatmulLtState()
                            state.threshold = 6.0
                            state.has_fp16_weights = False
                            state.memory_efficient_backward = False
                            state.use_pool = True
                            state.CB = tensor.CB
                            state.SCB = tensor.SCB
                            tensor.CB = None
                            tensor.SCB = None

199
                            def replace_linear(state):
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
                                def linear(input, weight, bias):
                                    out = bnb.matmul(
                                        input,
                                        weight,
                                        state=state,
                                        threshold=state.threshold,
                                        bias=bias,
                                    )

                                    if state.CB is not None:
                                        # we converted 8-bit row major to turing/ampere format
                                        # in the first inference pass
                                        # we no longer need the row-major weight
                                        del state.CB
                                        weight.data = state.CxB

216
                                    return out
217
218
219

                                return linear

220
                            module.linear = replace_linear(state)
221
222
223
224
225
226
227
228

                        else:
                            tensor = tensor.to(device)

                    module._parameters[param_name] = tensor
                    if name == "word_embeddings.weight":
                        model.lm_head._parameters["weight"] = tensor

229
230
231
    def forward(
        self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
    ):
232
233
234
        outputs = self.model.forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
235
            position_ids=position_ids,
236
237
238
239
240
            past_key_values=past_key_values,
            use_cache=True,
        )

        # Logits are sharded, so we need to gather them
OlivierDehaene's avatar
OlivierDehaene committed
241
242
243
        logits = [torch.empty_like(outputs.logits) for _ in range(self.world_size)]
        torch.distributed.all_gather(logits, outputs.logits, group=self.process_group)
        logits = torch.cat(logits, dim=2)
244

245
        return logits, outputs.past_key_values