bloom.py 9.6 KB
Newer Older
1
2
3
import torch
import torch.distributed

4
from typing import List, Optional
5
6
7
8
9
10
11
12
13
14

from accelerate import init_empty_weights
from safetensors import safe_open
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
from transformers.models.bloom.parallel_layers import (
    TensorParallelColumnLinear,
    TensorParallelEmbedding,
    TensorParallelRowLinear,
)

15
from text_generation.models import CausalLM
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from text_generation.utils import (
    initialize_torch_distributed,
    weight_files,
    download_weights,
)

HAS_BITS_AND_BYTES = True
try:
    import bitsandbytes as bnb
    from bitsandbytes.nn import Int8Params
except Exception as e:
    HAS_BITS_AND_BYTES = False

torch.manual_seed(0)


32
class BLOOMSharded(CausalLM):
33
    def __init__(self, model_name: str, quantize: bool = False):
34
35
36
        if not model_name.startswith("bigscience/bloom"):
            raise ValueError(f"Model {model_name} is not supported")

37
38
39
        self.process_group, self.rank, self.world_size = initialize_torch_distributed()
        self.master = self.rank == 0
        if torch.cuda.is_available():
40
            device = torch.device(f"cuda:{self.rank}")
41
42
            dtype = torch.float16
        else:
43
            device = torch.device("cpu")
44
45
            dtype = torch.float32

46
        tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

        config = AutoConfig.from_pretrained(
            model_name, slow_but_exact=False, tp_parallel=True
        )
        config.pad_token_id = 3

        # The flag below controls whether to allow TF32 on matmul. This flag defaults to False
        # in PyTorch 1.12 and later.
        torch.backends.cuda.matmul.allow_tf32 = True

        # The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
        torch.backends.cudnn.allow_tf32 = True

        # Only download weights for small models
        if self.master and model_name == "bigscience/bloom-560m":
            download_weights(model_name, extension=".safetensors")

        torch.distributed.barrier(group=self.process_group)
        filenames = weight_files(model_name, extension=".safetensors")

        with init_empty_weights():
            model = AutoModelForCausalLM.from_config(config)

        torch.distributed.barrier(group=self.process_group)
        self.load_weights(
            model,
            filenames,
            quantize=quantize,
75
            device=device,
76
77
78
79
80
            rank=self.rank,
            world_size=self.world_size,
        )
        self.model = model.eval().to(dtype)
        torch.distributed.barrier(group=self.process_group)
81
82
83
84
85
        super(CausalLM, self).__init__(
            tokenizer=tokenizer,
            num_heads=config.n_head // self.process_group.size(),
            device=device,
        )
86
87
88

    @staticmethod
    def load_weights(
89
90
91
92
93
94
        model,
        filenames: List[str],
        quantize: bool,
        device: torch.device,
        rank: int,
        world_size: int,
95
96
97
98
    ):
        parameters = dict(model.named_parameters())
        for file in filenames:
            with safe_open(
99
                file, framework="pt", device=str(device) if not quantize else "cpu"
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
            ) as f:
                for name in f.keys():
                    full_name = f"transformer.{name}"

                    module_name, param_name = full_name.rsplit(".", 1)
                    module = model.get_submodule(module_name)
                    current_tensor = parameters[full_name]

                    slice_ = f.get_slice(name)

                    if isinstance(module, TensorParallelColumnLinear):
                        if param_name == "weight":
                            size = slice_.get_shape()[0]
                            block_size = size // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            tensor = slice_[start:stop]
                            tensor = tensor.transpose(1, 0)
                        else:
                            size = slice_.get_shape()[0]
                            block_size = size // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            tensor = slice_[start:stop]
                    elif isinstance(module, TensorParallelRowLinear):
                        if param_name == "weight":
                            size = slice_.get_shape()[1]
                            block_size = size // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            tensor = slice_[:, start:stop]
                            tensor = tensor.transpose(1, 0)
                        else:
                            tensor = slice_[:]
                            # XXX: Hack for Rowlinear to add the bias only once.
                            if rank != 0:
                                tensor = torch.zeros_like(tensor)
                    elif isinstance(module, TensorParallelEmbedding):
                        size = slice_.get_shape()[0]
                        block_size = size // world_size
                        start = rank * block_size
                        stop = (rank + 1) * block_size
                        tensor = slice_[start:stop]
                    else:
                        tensor = slice_[:]

                    if current_tensor.shape != tensor.shape:
                        raise ValueError(
                            f"Name {name} -- Current {current_tensor.shape} and got {tensor.shape}"
                        )

                    tensor = tensor.contiguous()

                    if quantize:
                        if not HAS_BITS_AND_BYTES:
                            raise ImportError(
                                "bitsandbytes is not available on your machine either because it is not installed "
                                "or you don't have a GPU.\n"
                                "You can install it with `pip install bitsandbytes`."
                            )

                        if (
162
163
164
                            type(module)
                            in [TensorParallelRowLinear, TensorParallelColumnLinear]
                            and param_name == "weight"
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
                        ):
                            tensor = Int8Params(
                                tensor.transpose(1, 0),
                                has_fp16_weights=False,
                                requires_grad=False,
                            ).to(device)
                            state = bnb.MatmulLtState()
                            state.threshold = 6.0
                            state.has_fp16_weights = False
                            state.memory_efficient_backward = False
                            state.use_pool = True
                            state.CB = tensor.CB
                            state.SCB = tensor.SCB
                            tensor.CB = None
                            tensor.SCB = None

                            def replace_linear(state, in_features, out_features):
                                def linear(input, weight, bias):
                                    size_out = input.size()[:-1] + (out_features,)
                                    input = input.view(-1, in_features)
                                    out = torch.empty(
                                        size_out, device=input.device, dtype=input.dtype
                                    )
                                    out = bnb.matmul(
                                        input,
                                        weight,
                                        out=out.view(-1, out_features),
                                        state=state,
                                        threshold=state.threshold,
                                        bias=bias,
                                    )

                                    if state.CB is not None:
                                        # we converted 8-bit row major to turing/ampere format
                                        # in the first inference pass
                                        # we no longer need the row-major weight
                                        del state.CB
                                        weight.data = state.CxB

                                    return out.view(size_out)

                                return linear

                            module.linear = replace_linear(
                                state, module.in_features, module.out_features
                            )

                        else:
                            tensor = tensor.to(device)

                    module._parameters[param_name] = tensor
                    if name == "word_embeddings.weight":
                        model.lm_head._parameters["weight"] = tensor

    def forward(self, input_ids, attention_mask, past_key_values: Optional = None):
        outputs = self.model.forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            use_cache=True,
        )

        # Logits are sharded, so we need to gather them
        logits_shard = outputs.logits[:, -1, :].contiguous()

        batch_size, vocab_shard_size = logits_shard.shape
        vocab_size = self.world_size * vocab_shard_size
        logits = [torch.empty_like(logits_shard) for _ in range(self.world_size)]
        torch.distributed.all_gather(logits, logits_shard, group=self.process_group)
        logits = torch.cat(logits, dim=1).view(batch_size, 1, vocab_size)

236
        return logits, outputs.past_key_values