"vscode:/vscode.git/clone" did not exist on "a1f011d09a094801707ed864d798f9250f754c7b"
flash_causal_lm.py 59.1 KB
Newer Older
1
import math
2
import os
3
import time
4
import itertools
5
6
7
import torch
import torch.distributed

8
9
import numpy as np

10
from loguru import logger
11
12
from dataclasses import dataclass
from opentelemetry import trace
13
from transformers import PreTrainedTokenizerBase
xuxzh1's avatar
last  
xuxzh1 committed
14
from typing import Iterable, Optional, Tuple, List, Type, Dict
15

xuxzh1's avatar
last  
xuxzh1 committed
16
17
18
19
from text_generation_server.adapters import AdapterBatchData, AdapterBatchMetadata
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
from text_generation_server.utils.chunks import concat_text_chunks
from text_generation_server.utils.import_utils import SYSTEM
OlivierDehaene's avatar
OlivierDehaene committed
20
from text_generation_server.models import Model
21
from text_generation_server.utils.tokens import batch_top_tokens
xuxzh1's avatar
last  
xuxzh1 committed
22
from text_generation_server.utils.dist import RANK
Nicolas Patry's avatar
Nicolas Patry committed
23
from text_generation_server.utils.speculate import get_speculate
24
25
from text_generation_server.models.types import (
    Batch,
Nicolas Patry's avatar
Nicolas Patry committed
26
    Tokens,
27
28
29
    Generation,
    GeneratedText,
)
xuxzh1's avatar
last  
xuxzh1 committed
30
31
32
33
from text_generation_server.pb import generate_pb2
from text_generation_server.models.globals import (
    MEM_POOL,
    FLASH_DECODING,
34
    BLOCK_SIZE,
xuxzh1's avatar
last  
xuxzh1 committed
35
36
37
    CUDA_GRAPHS,
    get_adapter_to_index,
    MODEL_ID,
38
)
xuxzh1's avatar
last  
xuxzh1 committed
39
from text_generation_server.layers.attention import Seqlen
40
from text_generation_server.utils import StoppingCriteria, HeterogeneousNextTokenChooser
41
from text_generation_server.utils.dist import MEMORY_FRACTION
xuxzh1's avatar
last  
xuxzh1 committed
42
from text_generation_server.utils.segments import SegmentConcatBuilder, find_segments
43

Nicolas Patry's avatar
Nicolas Patry committed
44
from text_generation_server.utils.import_utils import (
xuxzh1's avatar
last  
xuxzh1 committed
45
46
47
    empty_cache,
    synchronize,
    get_free_memory,
Nicolas Patry's avatar
Nicolas Patry committed
48
)
49

xuxzh1's avatar
last  
xuxzh1 committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
tracer = trace.get_tracer(__name__)


# Will be set in init
SLIDING_WINDOW: Optional[int] = None


def set_sliding_window(sliding_window: int):
    global SLIDING_WINDOW
    SLIDING_WINDOW = sliding_window


def get_sliding_windows() -> int:
    global SLIDING_WINDOW
    return SLIDING_WINDOW

66

67
68
69
70
@dataclass
class FlashCausalLMBatch(Batch):
    batch_id: int
    requests: List[generate_pb2.Request]
71
72
    # request id -> idx in list mapping
    requests_idx_mapping: Dict[int, int]
73
74

    # Decoder values
75
76
    input_ids: torch.Tensor
    position_ids: torch.Tensor
xuxzh1's avatar
last  
xuxzh1 committed
77
    speculative_ids: Optional[torch.Tensor]
78

79
80
81
82
    # Flash Attention values

    # tensor of length b containing the cumulative sequence lengths of the sequences in the batch, only used in prefill
    cu_seqlen_prefill: Optional[torch.Tensor]
xuxzh1's avatar
last  
xuxzh1 committed
83
84
85
    # Prefill cache indices is used to slice into the kv tensor before caching it into the paged attention buffers
    # as we only keep SLIDING_WINDOW values instead of the whole tensor
    prefill_cache_indices: Optional[torch.Tensor]
86
87
88
89
90
91
92
93
94
95

    # Paged Attention values

    # Set when creating the batch
    # CPU tensor of length b indicating the start of each sequence in slots
    start_slots: torch.Tensor
    # tensor of indices of the currently used slots, length = \sum_{i=0}^{b} s_i in prefill, length = b in decode
    slot_indices: torch.Tensor

    # list of length b of list of length s_i // block_size
xuxzh1's avatar
last  
xuxzh1 committed
96
    block_tables: List[List[int]]
97
    # tensor of size [b, max_total_seqlen // block_size] holding the paged attention block tables for all sequences
xuxzh1's avatar
last  
xuxzh1 committed
98
    block_tables_tensor: torch.Tensor
99
    # tensor of length \sum_{i=0}^{b} max_s_i  holding the paged attention slots for all sequences
xuxzh1's avatar
last  
xuxzh1 committed
100
    slots: torch.Tensor
101

102
103
    max_seqlen: int

104
105
106
107
108
    # Prefill metadata tensors to efficiently compute logprobs
    prefill_head_indices: Optional[torch.Tensor]
    prefill_next_token_indices: Optional[torch.tensor]
    prefill_cu_outlens: Optional[List[int]]

109
110
    # All tokens
    all_input_ids: List[List[int]]
111
    all_input_ids_tensor: torch.Tensor
112
113
114

    # Lengths of all generations present in the batch
    input_lengths: List[int]
115
    input_lengths_tensor: torch.Tensor
116
117
    prefix_offsets: List[Optional[int]]
    read_offsets: List[Optional[int]]
118
119

    # Generation helpers
120
    next_token_chooser: HeterogeneousNextTokenChooser
121
    stopping_criterias: List[StoppingCriteria]
Nicolas Patry's avatar
Nicolas Patry committed
122
123
    top_n_tokens: List[int]
    top_n_tokens_tensor: torch.Tensor
124

xuxzh1's avatar
last  
xuxzh1 committed
125
126
127
    # Adapter metadata for each request
    adapter_meta: AdapterBatchMetadata

128
    # Number of blocks in this batch
xuxzh1's avatar
last  
xuxzh1 committed
129
    num_blocks: int
130
131
    # Maximum number of blocks
    max_blocks: int
132

133
134
    def to_pb(self) -> generate_pb2.CachedBatch:
        return generate_pb2.CachedBatch(
135
            id=self.batch_id,
136
            request_ids=[r.id for r in self.requests],
137
            size=len(self),
xuxzh1's avatar
last  
xuxzh1 committed
138
            max_tokens=self.num_blocks * BLOCK_SIZE,
139
140
141
        )

    @classmethod
xuxzh1's avatar
last  
xuxzh1 committed
142
143
144
    def batch_tokenized_inputs(
        cls, requests: Iterable[generate_pb2.Request], tokenizer
    ):
145
146
        batch_inputs = []
        max_truncation = 0
147
        for r in requests:
xuxzh1's avatar
last  
xuxzh1 committed
148
            batch_inputs.append(concat_text_chunks(r.input_chunks.chunks))
149
150
151
152
153
            max_truncation = max(max_truncation, r.truncate)

        batch_tokenized_inputs = tokenizer(
            batch_inputs, truncation=True, max_length=max_truncation
        )["input_ids"]
154
        return batch_tokenized_inputs
155

156
    @classmethod
xuxzh1's avatar
last  
xuxzh1 committed
157
    def from_tokenized(
158
159
160
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
xuxzh1's avatar
last  
xuxzh1 committed
161
        batch_tokenized_inputs,
162
163
164
        dtype: torch.dtype,
        device: torch.device,
    ) -> "FlashCausalLMBatch":
xuxzh1's avatar
last  
xuxzh1 committed
165
        sliding_window = get_sliding_windows()
166
        position_ids = []
167
        cu_seqlen_prefill = [0]
168
169
        start_slots = []
        slot_indices = []
xuxzh1's avatar
last  
xuxzh1 committed
170
        prefill_cache_indices = []
171
172

        input_lengths = []
173
174
        prefix_offsets = []
        read_offsets = []
175
        all_input_ids = []
176
        requests_idx_mapping = {}
177

178
179
180
181
182
183
        all_prefill_logprobs = True
        no_prefill_logprobs = True
        prefill_head_indices = []
        prefill_next_token_indices = []
        prefill_cu_outlens = [0]

184
        next_token_chooser_parameters = []
185
        stopping_criterias = []
Nicolas Patry's avatar
Nicolas Patry committed
186
        top_n_tokens = []
187

xuxzh1's avatar
last  
xuxzh1 committed
188
189
190
        adapter_indices_list = []
        adapter_set = set()

191
192
        # Cumulative length
        cumulative_length = 0
193
        cumulative_max_length = 0
194
        prefill_out_cumulative_length = 0
195

xuxzh1's avatar
last  
xuxzh1 committed
196
        num_blocks = 0
197
        max_seqlen = 0
198
        max_length = 0
199
        max_blocks = 0
200

xuxzh1's avatar
last  
xuxzh1 committed
201
202
203
        block_tables = []
        slots = []

204
        # Parse batch
205
206
207
        for i, (r, tokenized_input) in enumerate(
            zip(pb.requests, batch_tokenized_inputs)
        ):
208
209
210
            # request id -> idx in list mapping
            requests_idx_mapping[r.id] = i

211
            tokenized_input = tokenized_input[-r.truncate :]
huangwb's avatar
huangwb committed
212
            '''fix input s=1 crash bug
213
214
215
216
217
            if (
                tokenized_input[0] == tokenizer.bos_token_id
                and tokenized_input[1] == tokenizer.bos_token_id
            ):
                tokenized_input = tokenized_input[1:]
huangwb's avatar
huangwb committed
218
            '''
219

220
221
            input_length = len(tokenized_input)
            input_lengths.append(input_length)
222

223
            prefix_offsets.append(input_length - 5)
224
            read_offsets.append(input_length)
225

226
            all_input_ids.append(tokenized_input)
227
228

            # Position ids
229
230
            request_position_ids = torch.arange(0, input_length, dtype=torch.int32)
            position_ids.append(request_position_ids)
231
232

            # Add cumulative lengths of all previous inputs
233
            cu_seqlen_prefill.append(cumulative_length + input_length)
234

235
            next_token_chooser_parameters.append(r.parameters)
236

237
238
239
            stopping_criteria = StoppingCriteria.from_pb(
                r.stopping_parameters, tokenizer
            )
240
            max_new_tokens = stopping_criteria.max_new_tokens
241
            stopping_criterias.append(stopping_criteria)
Nicolas Patry's avatar
Nicolas Patry committed
242
            top_n_tokens.append(r.top_n_tokens)
243

xuxzh1's avatar
last  
xuxzh1 committed
244
245
246
247
248
            ADAPTER_TO_INDEX = get_adapter_to_index()
            adapter_index = ADAPTER_TO_INDEX.get(r.adapter_id, 0)
            adapter_indices_list.append(torch.full((input_length,), adapter_index))
            adapter_set.add(adapter_index)

249
250
            # Paged attention
            # Remove one as the first token des not have a past
Nicolas Patry's avatar
Nicolas Patry committed
251
            speculative_length = get_speculate()
xuxzh1's avatar
last  
xuxzh1 committed
252
            speculative_length = 0 if speculative_length is None else speculative_length
Nicolas Patry's avatar
Nicolas Patry committed
253
            total_tokens = input_length + max_new_tokens - 1 + speculative_length
xuxzh1's avatar
last  
xuxzh1 committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

            # blocks and slots can be empty (for example in warmup)
            if not r.blocks:
                needed_blocks = math.ceil(total_tokens / BLOCK_SIZE)
                request_blocks = [
                    b for b in range(num_blocks, num_blocks + needed_blocks)
                ]
                request_slots = [
                    s
                    for b in request_blocks
                    for s in range(b * BLOCK_SIZE, (b + 1) * BLOCK_SIZE)
                ]
            else:
                request_blocks = r.blocks
                request_slots = r.slots

            block_tables.append(request_blocks)
            slots.extend(request_slots[:total_tokens])
            num_blocks += len(request_blocks)
273
274
275
276
277
278
279
280
281
            start_slots.append(cumulative_max_length)

            request_slot_indices = torch.arange(
                cumulative_max_length,
                cumulative_max_length + input_length,
                dtype=torch.int64,
            )
            slot_indices.append(request_slot_indices)

xuxzh1's avatar
last  
xuxzh1 committed
282
283
284
285
286
287
288
289
290
            # Create tensor to slice into the kv tensor in prefill
            if sliding_window is not None:
                request_prefill_cache_indices = torch.arange(
                    cumulative_length + max(0, input_length - sliding_window),
                    cumulative_length + input_length,
                    dtype=torch.int64,
                )
                prefill_cache_indices.append(request_prefill_cache_indices)

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
            all_prefill_logprobs = all_prefill_logprobs and r.prefill_logprobs
            no_prefill_logprobs = no_prefill_logprobs and not r.prefill_logprobs

            if r.prefill_logprobs:
                prefill_head_indices.append(request_position_ids + cumulative_length)
                prefill_next_token_indices.append(
                    prefill_out_cumulative_length + input_length - 1
                )
                prefill_cu_outlens.append(prefill_out_cumulative_length + input_length)
                prefill_out_cumulative_length += input_length
            else:
                prefill_head_indices.append(
                    torch.tensor(
                        [cumulative_length + input_length - 1], dtype=torch.int32
                    )
                )
                prefill_next_token_indices.append(prefill_out_cumulative_length)
                prefill_cu_outlens.append(prefill_out_cumulative_length + 1)
                prefill_out_cumulative_length += 1

311
312
            # Update
            cumulative_length += input_length
313
314
            cumulative_max_length += total_tokens
            max_seqlen = max(max_seqlen, input_length)
xuxzh1's avatar
last  
xuxzh1 committed
315
            max_blocks = max(max_blocks, len(request_blocks))
OlivierDehaene's avatar
OlivierDehaene committed
316
317
318
            max_length = max(
                max_length, input_length + max_new_tokens + speculative_length
            )
319

xuxzh1's avatar
last  
xuxzh1 committed
320
321
322
323
        adapter_indices = torch.cat(adapter_indices_list).to(
            dtype=torch.int64, device=device
        )

324
        next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
drbh's avatar
drbh committed
325
            next_token_chooser_parameters, dtype, device, tokenizer
326
        )
327
        start_slots = torch.tensor(start_slots, dtype=torch.int64)
328
329
330
331
332
333
334

        # Padded all_input_ids_tensor
        all_input_ids_tensor = np.zeros(
            (len(all_input_ids), max_length), dtype=np.int64
        )
        for i, input_ids in enumerate(all_input_ids):
            all_input_ids_tensor[i, : len(input_ids)] = input_ids
335

336
337
338
339
340
        # Create tensors on device
        all_input_ids_tensor = torch.tensor(
            all_input_ids_tensor, dtype=torch.int64, device=device
        )

341
342
343
        if len(pb.requests) > 1:
            input_ids = np.concatenate(all_input_ids, dtype=np.int64)
            position_ids = torch.cat(position_ids)
344
            slot_indices = torch.cat(slot_indices)
xuxzh1's avatar
last  
xuxzh1 committed
345
346
            if sliding_window is not None:
                prefill_cache_indices = torch.cat(prefill_cache_indices)
347
348
349
        else:
            input_ids = all_input_ids[0]
            position_ids = position_ids[0]
350
            slot_indices = slot_indices[0]
xuxzh1's avatar
last  
xuxzh1 committed
351
352
            if sliding_window is not None:
                prefill_cache_indices = prefill_cache_indices[0]
353

354
355
        cu_seqlen_prefill = torch.tensor(
            cu_seqlen_prefill, device=device, dtype=torch.int32
356
357
358
        )
        position_ids = position_ids.to(device)
        slot_indices = slot_indices.to(device)
xuxzh1's avatar
last  
xuxzh1 committed
359
360
361
        prefill_cache_indices = (
            prefill_cache_indices.to(device) if sliding_window is not None else None
        )
362
        input_ids = torch.tensor(input_ids, dtype=torch.int64, device=device)
363
364
        input_lengths_tensor = torch.tensor(
            input_lengths, dtype=torch.int32, device=device
365
        )
366

xuxzh1's avatar
last  
xuxzh1 committed
367
368
369
370
371
        adapter_segments, adapter_segment_indices = find_segments(adapter_indices)
        adapter_segments = torch.tensor(
            adapter_segments, dtype=torch.int32, device=device
        )

372
373
        if all_prefill_logprobs:
            prefill_head_indices = None
374
            prefill_next_token_indices = cu_seqlen_prefill[1:] - 1
375
        elif no_prefill_logprobs:
376
            prefill_head_indices = cu_seqlen_prefill[1:] - 1
377
378
379
380
381
382
383
384
            prefill_next_token_indices = None
        else:
            prefill_head_indices = torch.tensor(
                torch.cat(prefill_head_indices), dtype=torch.int64, device=device
            )
            prefill_next_token_indices = torch.tensor(
                prefill_next_token_indices, dtype=torch.int64, device=device
            )
Nicolas Patry's avatar
Nicolas Patry committed
385
386
387
        top_n_tokens_tensor = torch.tensor(
            top_n_tokens, device=device, dtype=torch.int64
        )
388

xuxzh1's avatar
last  
xuxzh1 committed
389
390
391
392
393
394
395
396
        slots = torch.tensor(slots, dtype=torch.int64, device=device)
        block_tables_tensor = torch.zeros(
            (len(block_tables), max_blocks), dtype=torch.int32, device="cpu"
        )
        for i, request_blocks in enumerate(block_tables):
            block_tables_tensor[i, : len(request_blocks)] = torch.tensor(request_blocks)
        block_tables_tensor = block_tables_tensor.to(device)

397
398
399
        return cls(
            batch_id=pb.id,
            requests=pb.requests,
400
            requests_idx_mapping=requests_idx_mapping,
401
402
            input_ids=input_ids,
            position_ids=position_ids,
403
            cu_seqlen_prefill=cu_seqlen_prefill,
xuxzh1's avatar
last  
xuxzh1 committed
404
            prefill_cache_indices=prefill_cache_indices,
405
406
            start_slots=start_slots,
            slot_indices=slot_indices,
xuxzh1's avatar
last  
xuxzh1 committed
407
408
409
            block_tables=block_tables,
            block_tables_tensor=block_tables_tensor,
            slots=slots,
410
            max_seqlen=max_seqlen,
411
412
413
            prefill_head_indices=prefill_head_indices,
            prefill_next_token_indices=prefill_next_token_indices,
            prefill_cu_outlens=prefill_cu_outlens,
414
            input_lengths=input_lengths,
415
            input_lengths_tensor=input_lengths_tensor,
416
417
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
418
            all_input_ids=all_input_ids,
419
420
            all_input_ids_tensor=all_input_ids_tensor,
            next_token_chooser=next_token_chooser,
421
            stopping_criterias=stopping_criterias,
Nicolas Patry's avatar
Nicolas Patry committed
422
423
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
xuxzh1's avatar
last  
xuxzh1 committed
424
            num_blocks=num_blocks,
425
            max_blocks=max_blocks,
xuxzh1's avatar
last  
xuxzh1 committed
426
427
428
429
430
431
            adapter_meta=AdapterBatchMetadata(
                adapter_indices=adapter_indices,
                adapter_set=adapter_set,
                adapter_segments=adapter_segments,
                segment_indices=adapter_segment_indices,
            ),
Nicolas Patry's avatar
Nicolas Patry committed
432
            speculative_ids=None,
433
434
        )

xuxzh1's avatar
last  
xuxzh1 committed
435
436
437
438
439
440
441
442
443
444
445
    @classmethod
    def from_pb(
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        dtype: torch.dtype,
        device: torch.device,
    ) -> "FlashCausalLMBatch":
        batch_tokenized_inputs = cls.batch_tokenized_inputs(pb.requests, tokenizer)
        return cls.from_tokenized(pb, tokenizer, batch_tokenized_inputs, dtype, device)

446
    @tracer.start_as_current_span("filter")
447
448
    def filter(self, request_ids: List[int]) -> "FlashCausalLMBatch":
        if len(request_ids) == 0:
449
450
            raise ValueError("Batch must have at least one request")
        # We assume that if len(requests) == len(self) then the requests are the same
451
        if len(request_ids) == len(self):
452
453
            return self

454
        device = self.input_ids.device
455

456
457
458
        # New values after filtering
        requests_idx_mapping = {}

459
460
461
        # Used to index into tensors
        indices = []

462
463
464
        # slots to keep after filtering
        slot_filtering_indices = torch.zeros(
            self.slots.shape[0], dtype=torch.bool, device=device
465
466
        )

467
        # Create on CPU to only move to GPU once instead of at every copy
468
        slot_indices = torch.empty(len(request_ids), dtype=torch.int64)
469
470
        max_seqlen = 0

471
        requests = []
472
473
        start_slots = []
        block_tables = []
474
475
        all_input_ids = []

476
        input_lengths = []
477
478
        prefix_offsets = []
        read_offsets = []
479

480
        stopping_criterias = []
Nicolas Patry's avatar
Nicolas Patry committed
481
        top_n_tokens = []
xuxzh1's avatar
last  
xuxzh1 committed
482
        adapter_set = set()
483

xuxzh1's avatar
last  
xuxzh1 committed
484
        num_blocks = 0
485
486
487
488
        max_blocks = 0
        # Cumulative length
        cumulative_max_length = 0

489
490
        for i, request_id in enumerate(request_ids):
            idx = self.requests_idx_mapping[request_id]
491
            indices.append(idx)
492
493
494
            requests_idx_mapping[request_id] = i

            requests.append(self.requests[idx])
495
496
497
498

            # Get length
            request_input_length = self.input_lengths[idx]
            max_seqlen = max(max_seqlen, request_input_length)
499

500
501
502
            all_input_ids.append(self.all_input_ids[idx])

            input_lengths.append(request_input_length)
503
504
            prefix_offsets.append(self.prefix_offsets[idx])
            read_offsets.append(self.read_offsets[idx])
505

506
507
            stopping_criteria = self.stopping_criterias[idx]
            stopping_criterias.append(stopping_criteria)
508

Nicolas Patry's avatar
Nicolas Patry committed
509
510
            top_n_tokens.append(self.top_n_tokens[idx])

xuxzh1's avatar
last  
xuxzh1 committed
511
512
513
514
            ADAPTER_TO_INDEX = get_adapter_to_index()
            adapter_index = ADAPTER_TO_INDEX.get(self.requests[idx].adapter_id, 0)
            adapter_set.add(adapter_index)

515
            remaining_tokens = (
516
517
                stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
            )
518

519
            request_block_table = self.block_tables[idx]
xuxzh1's avatar
last  
xuxzh1 committed
520
            num_blocks += len(request_block_table)
521
522
523
            block_tables.append(request_block_table)
            start_slots.append(cumulative_max_length)

524
            # Copy to tensor (CPU)
525
            slot_indices[i] = cumulative_max_length + request_input_length - 1
526
527

            # Set slice
528
529
530
531
532
            slot_filtering_indices[
                self.start_slots[idx] : self.start_slots[idx]
                + request_input_length
                + remaining_tokens
                - 1
533
534
535
            ] = True

            cumulative_max_length += request_input_length + remaining_tokens - 1
536

537
538
            max_blocks = max(max_blocks, len(request_block_table))

539
540
541
        # Index into tensors
        input_ids = self.input_ids[indices]
        position_ids = self.position_ids[indices]
xuxzh1's avatar
last  
xuxzh1 committed
542
        adapter_indices = self.adapter_meta.adapter_indices[indices]
543
        all_input_ids_tensor = self.all_input_ids_tensor[indices]
544
545
546
        block_tables_tensor = self.block_tables_tensor[indices]
        input_lengths_tensor = self.input_lengths_tensor[indices]
        slots = self.slots[slot_filtering_indices]
547
        next_token_chooser = self.next_token_chooser.filter(indices)
Nicolas Patry's avatar
Nicolas Patry committed
548
        top_n_tokens_tensor = self.top_n_tokens_tensor[indices]
OlivierDehaene's avatar
OlivierDehaene committed
549
550
551
        speculative_ids = (
            self.speculative_ids[indices] if self.speculative_ids is not None else None
        )
552
553

        start_slots = torch.tensor(start_slots, dtype=torch.int64)
554

555
        # Move to GPU now that we have the whole tensor
556
        slot_indices = slot_indices.to(device)
557

xuxzh1's avatar
last  
xuxzh1 committed
558
559
560
561
562
        adapter_segments, adapter_segment_indices = find_segments(adapter_indices)
        adapter_segments = torch.tensor(
            adapter_segments, dtype=torch.int32, device=device
        )

563
        return type(self)(
564
565
566
567
568
            batch_id=self.batch_id,
            requests=requests,
            requests_idx_mapping=requests_idx_mapping,
            input_ids=input_ids,
            position_ids=position_ids,
569
            cu_seqlen_prefill=None,
xuxzh1's avatar
last  
xuxzh1 committed
570
            prefill_cache_indices=None,
571
572
573
574
575
            start_slots=start_slots,
            slot_indices=slot_indices,
            block_tables=block_tables,
            block_tables_tensor=block_tables_tensor,
            slots=slots,
576
            max_seqlen=max_seqlen,
577
578
579
            prefill_head_indices=None,
            prefill_next_token_indices=None,
            prefill_cu_outlens=None,
580
            input_lengths=input_lengths,
581
            input_lengths_tensor=input_lengths_tensor,
582
583
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
584
585
            all_input_ids=all_input_ids,
            all_input_ids_tensor=all_input_ids_tensor,
586
            next_token_chooser=next_token_chooser,
587
            stopping_criterias=stopping_criterias,
Nicolas Patry's avatar
Nicolas Patry committed
588
589
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
xuxzh1's avatar
last  
xuxzh1 committed
590
            num_blocks=num_blocks,
591
            max_blocks=max_blocks,
Nicolas Patry's avatar
Nicolas Patry committed
592
            speculative_ids=speculative_ids,
xuxzh1's avatar
last  
xuxzh1 committed
593
594
595
596
597
598
            adapter_meta=AdapterBatchMetadata(
                adapter_indices=adapter_indices,
                adapter_set=adapter_set,
                adapter_segments=adapter_segments,
                segment_indices=adapter_segment_indices,
            ),
599
600
601
602
603
604
605
606
607
        )

    @classmethod
    @tracer.start_as_current_span("concatenate")
    def concatenate(cls, batches: List["FlashCausalLMBatch"]) -> "FlashCausalLMBatch":
        # Batch attributes
        requests = []
        requests_idx_mapping = {}

xuxzh1's avatar
last  
xuxzh1 committed
608
        num_blocks = 0
609
610
611
612
613
614
615
616
        total_batch_size = 0
        total_slots = 0
        max_blocks = 0
        max_length = 0
        max_seqlen = 0
        for b in batches:
            total_batch_size += len(b)
            total_slots += len(b.slots)
xuxzh1's avatar
last  
xuxzh1 committed
617
            num_blocks += b.num_blocks
OlivierDehaene's avatar
OlivierDehaene committed
618
619
620
            speculative_length = (
                b.speculative_ids.shape[1] if b.speculative_ids is not None else 0
            )
621
622
623
624
625
626
627
            max_blocks = max(max_blocks, b.max_blocks)
            max_seqlen = max(max_seqlen, b.max_seqlen)
            max_length = max(
                max_length,
                max(
                    input_length
                    + stopping_criteria.max_new_tokens
Nicolas Patry's avatar
Nicolas Patry committed
628
                    + speculative_length
629
630
631
632
633
634
                    - stopping_criteria.current_tokens
                    for input_length, stopping_criteria in zip(
                        b.input_lengths, b.stopping_criterias
                    )
                ),
            )
635
636
637

        input_ids = batches[0].input_ids.new_empty(total_batch_size)
        position_ids = batches[0].position_ids.new_empty(total_batch_size)
638
639
640
641
642
643
644
645
646
647
        slots = batches[0].slots.new_empty(total_slots)
        slot_indices = batches[0].slot_indices.new_empty(total_batch_size)
        input_lengths_tensor = batches[0].input_lengths_tensor.new_empty(
            total_batch_size
        )
        block_tables_tensor = batches[0].block_tables_tensor.new_zeros(
            (total_batch_size, max_blocks)
        )
        all_input_ids_tensor = batches[0].all_input_ids_tensor.new_zeros(
            (total_batch_size, max_length)
648
        )
Nicolas Patry's avatar
Nicolas Patry committed
649
650
651
        top_n_tokens_tensor = batches[0].top_n_tokens_tensor.new_zeros(
            total_batch_size,
        )
xuxzh1's avatar
last  
xuxzh1 committed
652
653
654
655
656
657
658
659
        total_indices_size = sum(
            b.adapter_meta.adapter_indices.shape[0] for b in batches
        )
        adapter_indices = batches[0].adapter_meta.adapter_indices.new_empty(
            total_indices_size
        )
        adapter_set = set()
        adapter_segment_builder = SegmentConcatBuilder()
660

661
662
        start_slots = []
        block_tables = []
663
664
665
        all_input_ids = []

        input_lengths = []
666
667
        prefix_offsets = []
        read_offsets = []
668

669
        next_token_chooser_parameters = []
670
        fsm_grammar_states = []
671
        stopping_criterias = []
Nicolas Patry's avatar
Nicolas Patry committed
672
        top_n_tokens = []
673

674
        # Cumulative length
675
        cumulative_batch_size = 0
676
        cumulative_slots = 0
xuxzh1's avatar
last  
xuxzh1 committed
677
        cumulative_adapter_indices_size = 0
678
679
680

        for i, batch in enumerate(batches):
            requests.extend(batch.requests)
681
682
683
684
685
686
687
688

            if i == 0:
                requests_idx_mapping = batch.requests_idx_mapping
            else:
                # We need to offset the mapping for each batch by the cumulative batch size
                for k, v in batch.requests_idx_mapping.items():
                    requests_idx_mapping[k] = v + cumulative_batch_size

689
690
            start_index = cumulative_batch_size
            end_index = cumulative_batch_size + len(batch)
691
692
            slots_start_index = cumulative_slots
            slots_end_index = cumulative_slots + len(batch.slots)
693
694
695
696

            # Copy tensors (GPU)
            input_ids[start_index:end_index] = batch.input_ids
            position_ids[start_index:end_index] = batch.position_ids
697
698
            slot_indices[start_index:end_index] = batch.slot_indices + cumulative_slots
            input_lengths_tensor[start_index:end_index] = batch.input_lengths_tensor
Nicolas Patry's avatar
Nicolas Patry committed
699
            top_n_tokens_tensor[start_index:end_index] = batch.top_n_tokens_tensor
700
            slots[slots_start_index:slots_end_index] = batch.slots
701

xuxzh1's avatar
last  
xuxzh1 committed
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
            # Copy over adapter indices
            adapter_start_index = cumulative_adapter_indices_size
            adapter_end_index = (
                cumulative_adapter_indices_size
                + batch.adapter_meta.adapter_indices.shape[0]
            )
            adapter_indices[adapter_start_index:adapter_end_index] = (
                batch.adapter_meta.adapter_indices
            )
            cumulative_adapter_indices_size = adapter_end_index
            adapter_set.update(batch.adapter_meta.adapter_set)
            adapter_segment_builder.concat(
                batch.adapter_meta.adapter_segments, batch.adapter_meta.segment_indices
            )

717
718
719
            all_input_ids_tensor[
                start_index:end_index, : batch.all_input_ids_tensor.shape[1]
            ] = batch.all_input_ids_tensor[:, :max_length]
720

721
722
723
            block_tables_tensor[
                start_index:end_index, : batch.block_tables_tensor.shape[1]
            ] = batch.block_tables_tensor[:, :max_blocks]
724

725
726
727
            start_slots.append(batch.start_slots + cumulative_slots)

            block_tables.extend(batch.block_tables)
728
729
            all_input_ids.extend(batch.all_input_ids)

730
            input_lengths.extend(batch.input_lengths)
731
732
            prefix_offsets.extend(batch.prefix_offsets)
            read_offsets.extend(batch.read_offsets)
733

734
            next_token_chooser_parameters.extend([r.parameters for r in batch.requests])
735
            fsm_grammar_states.extend(batch.next_token_chooser.fsm_grammar_states)
736
737
            stopping_criterias.extend(batch.stopping_criterias)

Nicolas Patry's avatar
Nicolas Patry committed
738
739
            top_n_tokens.extend(batch.top_n_tokens)

740
            # Update
741
            cumulative_batch_size += len(batch)
742
            cumulative_slots += len(batch.slots)
743

744
        start_slots = torch.concat(start_slots)
745

746
        next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
747
748
749
            next_token_chooser_parameters,
            dtype=batches[0].next_token_chooser.dtype,
            device=batches[0].next_token_chooser.device,
drbh's avatar
drbh committed
750
            tokenizer=batches[0].next_token_chooser.tokenizer,
751
            fsm_grammar_states=fsm_grammar_states,
752
753
        )

OlivierDehaene's avatar
OlivierDehaene committed
754
755
756
757
758
        speculative_ids = (
            torch.cat([b.speculative_ids for b in batches], dim=0)
            if batches[0].speculative_ids is not None
            else None
        )
Nicolas Patry's avatar
Nicolas Patry committed
759

xuxzh1's avatar
last  
xuxzh1 committed
760
        adapter_segments, adapter_segment_indices = adapter_segment_builder.build()
761

762
        return cls(
763
764
            batch_id=batches[0].batch_id,
            requests=requests,
765
            requests_idx_mapping=requests_idx_mapping,
766
767
            input_ids=input_ids,
            position_ids=position_ids,
768
            cu_seqlen_prefill=None,
xuxzh1's avatar
last  
xuxzh1 committed
769
            prefill_cache_indices=None,
770
771
772
773
774
            start_slots=start_slots,
            slot_indices=slot_indices,
            block_tables=block_tables,
            block_tables_tensor=block_tables_tensor,
            slots=slots,
775
            max_seqlen=max_seqlen,
776
777
778
            prefill_head_indices=None,
            prefill_next_token_indices=None,
            prefill_cu_outlens=None,
779
            input_lengths=input_lengths,
780
            input_lengths_tensor=input_lengths_tensor,
781
782
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
783
784
            all_input_ids=all_input_ids,
            all_input_ids_tensor=all_input_ids_tensor,
785
            next_token_chooser=next_token_chooser,
786
            stopping_criterias=stopping_criterias,
Nicolas Patry's avatar
Nicolas Patry committed
787
788
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
xuxzh1's avatar
last  
xuxzh1 committed
789
            num_blocks=num_blocks,
790
            max_blocks=max_blocks,
OlivierDehaene's avatar
OlivierDehaene committed
791
            speculative_ids=speculative_ids,
xuxzh1's avatar
last  
xuxzh1 committed
792
793
794
795
796
797
            adapter_meta=AdapterBatchMetadata(
                adapter_indices=adapter_indices,
                adapter_set=adapter_set,
                adapter_segments=adapter_segments,
                segment_indices=adapter_segment_indices,
            ),
798
799
800
801
802
803
804
805
806
        )

    def __len__(self):
        return len(self.requests)


class FlashCausalLM(Model):
    def __init__(
        self,
xuxzh1's avatar
last  
xuxzh1 committed
807
        model_id: str,
808
809
810
811
812
813
814
815
816
        model: torch.nn.Module,
        tokenizer: PreTrainedTokenizerBase,
        num_layers: int,
        num_kv_heads: int,
        head_size: int,
        dtype: torch.dtype,
        device: torch.device,
        rank: int = 0,
        world_size: int = 1,
817
        sliding_window: Optional[int] = None,
818
    ):
819
820
821
        self.num_layers = num_layers
        self.num_kv_heads = num_kv_heads
        self.head_size = head_size
822

823
        self.cuda_graphs = {}
xuxzh1's avatar
last  
xuxzh1 committed
824
        self.kv_cache = []
825

826
        super(FlashCausalLM, self).__init__(
xuxzh1's avatar
last  
xuxzh1 committed
827
            model_id=model_id,
828
            model=model,
829
830
831
832
            tokenizer=tokenizer,
            requires_padding=False,
            dtype=dtype,
            device=device,
833
834
            rank=rank,
            world_size=world_size,
835
            sliding_window=sliding_window,
836
837
838
839
840
841
        )

    @property
    def batch_type(self) -> Type[FlashCausalLMBatch]:
        return FlashCausalLMBatch

xuxzh1's avatar
last  
xuxzh1 committed
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
    def max_past(self) -> int:
        return getattr(self.model, "max_past", None)

    def init_kv_cache(
        self,
        num_blocks: int,
        num_layers: int,
        num_heads: int,
        head_size: int,
        dtype: torch.dtype,
        device: torch.device,
    ):
        self.kv_cache = []
        empty_cache()

        element_size = torch.tensor([], dtype=dtype).element_size()
        if SYSTEM == "ipex" and device.type == "xpu":
            x = 1
        else:
            x = BLOCK_SIZE // element_size

        if FLASH_DECODING:
            self.kv_cache = [
                (
                    torch.empty(
                        (num_blocks, BLOCK_SIZE, num_heads, head_size),
                        dtype=dtype,
                        device=device,
                    ),
                    torch.empty(
                        (num_blocks, BLOCK_SIZE, num_heads, head_size),
                        dtype=dtype,
                        device=device,
                    ),
                )
                for _ in range(num_layers)
            ]
        elif SYSTEM == "ipex" and device == torch.device("cpu"):
            self.kv_cache = [
                (
                    torch.empty(
                        (num_blocks, num_heads, BLOCK_SIZE, head_size),
                        dtype=dtype,
                        device=device,
                    ),
                    torch.empty(
                        (num_blocks, num_heads, BLOCK_SIZE, head_size),
                        dtype=dtype,
                        device=device,
                    ),
                )
                for _ in range(num_layers)
            ]
        else:
            self.kv_cache = [
                (
                    torch.empty(
                        (num_blocks, num_heads, head_size // x, BLOCK_SIZE, x),
                        dtype=dtype,
                        device=device,
                    ),
                    torch.empty(
                        (num_blocks, num_heads, head_size, BLOCK_SIZE),
                        dtype=dtype,
                        device=device,
                    ),
                )
                for _ in range(num_layers)
            ]

912
913
914
    def cuda_graph_warmup(self, bs: int, max_s: int, max_bt: int):
        input_ids = torch.zeros(bs, dtype=torch.int64, device=self.device)
        position_ids = torch.zeros(bs, dtype=torch.int32, device=self.device)
915
        slots = torch.arange(bs, dtype=torch.int64, device=self.device)
916
917
918
919
920
921
922
923
924
925
        input_lengths = torch.ones(bs, dtype=torch.int32, device=self.device) * max_s
        block_tables = (
            torch.arange(max_bt, dtype=torch.int32, device=self.device)
            .repeat(bs)
            .reshape((bs, max_bt))
        )

        self.cuda_graphs[bs] = {
            "input_ids": input_ids,
            "position_ids": position_ids,
xuxzh1's avatar
last  
xuxzh1 committed
926
            "kv_cache": self.kv_cache,
927
928
929
930
            "block_tables": block_tables,
            "slots": slots,
            "input_lengths": input_lengths,
        }
xuxzh1's avatar
last  
xuxzh1 committed
931
        input_lengths_ = Seqlen(input_lengths=input_lengths)
932
933
934
935
936
937
938
939
940
        graph = torch.cuda.CUDAGraph()
        self.cuda_graphs[bs]["graph"] = graph

        torch.cuda.synchronize()
        # Run once outside to warmup
        self.model.forward(
            input_ids=input_ids,
            position_ids=position_ids,
            cu_seqlen_prefill=None,
xuxzh1's avatar
last  
xuxzh1 committed
941
            kv_cache=self.kv_cache,
942
943
            block_tables=block_tables,
            slots=slots,
xuxzh1's avatar
last  
xuxzh1 committed
944
            input_lengths=input_lengths_,
945
            max_s=max_s,
xuxzh1's avatar
last  
xuxzh1 committed
946
            prefill_cache_indices=None,
947
948
949
950
951
            lm_head_indices=None,
        )
        torch.cuda.synchronize()

        with torch.cuda.graph(graph, pool=MEM_POOL):
xuxzh1's avatar
last  
xuxzh1 committed
952
            input_lengths = Seqlen(input_lengths=input_lengths)
953
            logits, speculative_logits = self.model.forward(
954
955
956
                input_ids=input_ids,
                position_ids=position_ids,
                cu_seqlen_prefill=None,
xuxzh1's avatar
last  
xuxzh1 committed
957
                kv_cache=self.kv_cache,
958
959
960
961
                block_tables=block_tables,
                slots=slots,
                input_lengths=input_lengths,
                max_s=max_s,
xuxzh1's avatar
last  
xuxzh1 committed
962
                prefill_cache_indices=None,
963
964
                lm_head_indices=None,
            )
965
966
            self.cuda_graphs[bs]["logits"] = logits
            self.cuda_graphs[bs]["speculative_logits"] = speculative_logits
967
968
        torch.cuda.synchronize()

969
    def warmup(self, batch: FlashCausalLMBatch):
970
        # The warmup batch is the biggest batch we could ever receive
xuxzh1's avatar
last  
xuxzh1 committed
971
972
        empty_cache()

973
        try:
xuxzh1's avatar
last  
xuxzh1 committed
974
975
            self.init_kv_cache(
                batch.num_blocks,
976
977
978
979
980
981
                self.num_layers,
                self.num_kv_heads,
                self.head_size,
                self.dtype,
                self.device,
            )
982
            max_bt = batch.max_blocks
xuxzh1's avatar
last  
xuxzh1 committed
983
984
985
986
            max_s = max_bt * BLOCK_SIZE

            # if SYSTEM == "rocm" and os.environ.get("PYTORCH_TUNABLEOP_ENABLED", False):
            #     torch.cuda.tunable.tuning_enable(False)
987
            _, batch, _ = self.generate_token(batch)
OlivierDehaene's avatar
OlivierDehaene committed
988
        except torch.cuda.OutOfMemoryError as e:
989
            raise RuntimeError(
990
991
                f"Not enough memory to handle {len(batch.input_ids)} prefill tokens. "
                f"You need to decrease `--max-batch-prefill-tokens`"
992
            ) from e
993

xuxzh1's avatar
last  
xuxzh1 committed
994
        synchronize(self.device)
995

996
997
        # Inspired by the original implementation in [vllm](https://github.com/vllm-project/vllm)
        # Calculate the number of blocks that can be allocated with the free memory
998
999
1000
1001
        dtype_size = torch.tensor([], dtype=self.dtype).element_size()
        cache_block_size = BLOCK_SIZE * self.num_kv_heads * self.head_size
        total_cache_size = self.num_layers * cache_block_size * 2 * dtype_size

xuxzh1's avatar
last  
xuxzh1 committed
1002
1003
        free_memory = get_free_memory(self.device, MEMORY_FRACTION)
        batch_num_blocks = batch.num_blocks if batch is not None else 0
1004
1005

        num_blocks = (
1006
1007
            # Leave 5% for some wiggle room
            int((free_memory * 0.95) // total_cache_size)
xuxzh1's avatar
last  
xuxzh1 committed
1008
1009
            # Add batch.num_blocks as we allocated it above, so it is included in the peak memory.
            + batch_num_blocks
1010
1011
        )

1012
        del batch
1013

xuxzh1's avatar
last  
xuxzh1 committed
1014
        self.init_kv_cache(
1015
1016
1017
1018
1019
1020
1021
1022
            num_blocks,
            self.num_layers,
            self.num_kv_heads,
            self.head_size,
            self.dtype,
            self.device,
        )

xuxzh1's avatar
last  
xuxzh1 committed
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
        if SYSTEM == "rocm":
            if (
                os.environ.get("PYTORCH_TUNABLEOP_ENABLED") is None
                or os.environ.get("PYTORCH_TUNABLEOP_ENABLED") == "1"
            ):
                torch.cuda.tunable.enable()

                if os.environ.get("PYTORCH_TUNABLEOP_TUNING") != "0":
                    torch.cuda.tunable.tuning_enable(True)

                if os.environ.get("PYTORCH_TUNABLEOP_SEQLENS") is not None:
                    tuning_sequences = [
                        int(val)
                        for val in os.environ["PYTORCH_TUNABLEOP_SEQLENS"].split(",")
                    ]
                elif CUDA_GRAPHS is not None:
                    tuning_sequences = CUDA_GRAPHS
                else:
                    # For seqlen = 1, we dispatch to LLMM1 kernel.
                    tuning_sequences = [2, 3, 4, 5, 6, 7]

                tunableop_filepath = os.path.join(
                    HUGGINGFACE_HUB_CACHE,
                    f"tunableop_{MODEL_ID.replace('/', '-')}_tp{self.world_size}_rank{self.rank}.csv",
                )

                logger.info(
                    f"PyTorch TunableOp (https://github.com/fxmarty/pytorch/tree/2.3-patched/aten/src/ATen/cuda/tunable) is enabled. The warmup may take several minutes, picking the ROCm optimal matrix multiplication kernel for the target lengths {', '.join([str(seqlen) for seqlen in tuning_sequences])}, with typical 5-8% latency improvement for small sequence lengths. The picked GEMMs are saved in the file {tunableop_filepath}. To disable TunableOp, please launch TGI with `PYTORCH_TUNABLEOP_ENABLED=0`."
                )

                if os.path.isfile(tunableop_filepath):
                    logger.info(
                        f"The file {tunableop_filepath} already exists and will be reused."
                    )
                    torch.cuda.tunable.read_file(tunableop_filepath)

                os.makedirs(HUGGINGFACE_HUB_CACHE, exist_ok=True)

                for seqlen in tuning_sequences:
                    logger.info(f"Warming up TunableOp for seqlen={seqlen}")
                    self.tunableop_warmup(seqlen)
                    torch.cuda.tunable.write_file(tunableop_filepath)
                torch.cuda.tunable.tuning_enable(False)
            else:
                logger.info(
                    "PyTorch ROCm TunableOp (https://github.com/pytorch/pytorch/tree/main/aten/src/ATen/cuda/tunable) is disabled. TunableOp brings an additional 5-8% latency improvement for small sequence lengths but requires a warmup. If necessary, please use the environment variable PYTORCH_TUNABLEOP_ENABLED=1 to enable TunableOp."
                )

1071
        if CUDA_GRAPHS:
1072
            try:
1073
                logger.info(f"Cuda Graphs are enabled for sizes {CUDA_GRAPHS}")
1074
                # Warmup cuda graphs
1075
                for bs in CUDA_GRAPHS:
1076
1077
                    if self.speculate is None or self.speculate + 1 <= bs:
                        self.cuda_graph_warmup(bs, max_s, max_bt)
OlivierDehaene's avatar
OlivierDehaene committed
1078
            except torch.cuda.OutOfMemoryError:
1079
                logger.exception(f"Decode cuda graph warmup failed")
1080
1081
        else:
            logger.info(f"Cuda Graphs are disabled (CUDA_GRAPHS={CUDA_GRAPHS}).")
1082

1083
        return int(num_blocks * BLOCK_SIZE)
1084

xuxzh1's avatar
last  
xuxzh1 committed
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
    def tunableop_warmup(self, seqlen: int):
        input_ids = torch.zeros(seqlen, dtype=torch.int64, device=self.device)
        position_ids = torch.zeros(seqlen, dtype=torch.int32, device=self.device)
        slots = torch.arange(seqlen, dtype=torch.int64, device=self.device)

        # Dummy value, some models (starcoder2) don't accept `None`.
        input_lengths = torch.ones(seqlen, dtype=torch.int32, device=self.device)
        input_lengths = Seqlen(input_lengths=input_lengths)

        # We pass a `cu_seqlen_prefill` in order not to have to deal with paged attention cache allocation/deallocation.
        self.model.forward(
            input_ids=input_ids,
            position_ids=position_ids,
            cu_seqlen_prefill=torch.tensor(
                [0, seqlen], device=self.device, dtype=torch.int32
            ),
            kv_cache=self.kv_cache,
            block_tables=None,
            input_lengths=input_lengths,
            slots=slots,
            max_s=seqlen,
            lm_head_indices=None,
            prefill_cache_indices=None,
        )

1110
    def forward(
xuxzh1's avatar
last  
xuxzh1 committed
1111
        self, batch: FlashCausalLMBatch, adapter_data: AdapterBatchData
1112
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
1113
        # Model Forward
Nicolas Patry's avatar
Nicolas Patry committed
1114
        if batch.speculative_ids is not None:
OlivierDehaene's avatar
OlivierDehaene committed
1115
1116
1117
            input_ids = batch.input_ids
            position_ids = batch.position_ids
            cu_seqlen_prefill = batch.cu_seqlen_prefill
xuxzh1's avatar
last  
xuxzh1 committed
1118
            kv_cache = self.kv_cache
OlivierDehaene's avatar
OlivierDehaene committed
1119
1120
1121
1122
1123
            block_tables = batch.block_tables_tensor
            slots = batch.slots[batch.slot_indices]
            input_lengths = batch.input_lengths_tensor
            max_s = batch.max_seqlen
            lm_head_indices = batch.prefill_head_indices
Nicolas Patry's avatar
Nicolas Patry committed
1124
1125
1126

            speculative_ids = batch.speculative_ids

OlivierDehaene's avatar
OlivierDehaene committed
1127
            B, speculative_length = speculative_ids.shape
Nicolas Patry's avatar
Nicolas Patry committed
1128
            new_length = speculative_length + 1
OlivierDehaene's avatar
OlivierDehaene committed
1129
1130
1131
            new_input_ids = torch.cat(
                [input_ids.unsqueeze(-1), speculative_ids], dim=1
            ).reshape(-1)
Nicolas Patry's avatar
Nicolas Patry committed
1132
1133
            arange = torch.arange(new_length, device=position_ids.device).unsqueeze(0)
            arange_int = arange.to(dtype=torch.int32)
OlivierDehaene's avatar
OlivierDehaene committed
1134
1135
1136
            new_position_ids = (
                position_ids.unsqueeze(-1).expand(B, new_length) + arange
            ).view(-1)
Nicolas Patry's avatar
Nicolas Patry committed
1137
            slots = (slots.unsqueeze(-1).expand(B, new_length) + arange_int).view(-1)
OlivierDehaene's avatar
OlivierDehaene committed
1138
1139
1140
            input_lengths = (
                input_lengths.unsqueeze(-1).expand(B, new_length) + arange_int
            ).view(-1)
Nicolas Patry's avatar
Nicolas Patry committed
1141
1142

            # Add Copy the block tables for all members
OlivierDehaene's avatar
OlivierDehaene committed
1143
1144
1145
1146
1147
1148
            block_tables = (
                block_tables.unsqueeze(1)
                .expand(B, new_length, -1)
                .reshape(B * new_length, -1)
                .contiguous()
            )
Nicolas Patry's avatar
Nicolas Patry committed
1149
1150
1151
1152
1153
            max_s = max_s + speculative_length

            input_ids = new_input_ids
            position_ids = new_position_ids
        else:
OlivierDehaene's avatar
OlivierDehaene committed
1154
1155
1156
            input_ids = batch.input_ids
            position_ids = batch.position_ids
            cu_seqlen_prefill = batch.cu_seqlen_prefill
xuxzh1's avatar
last  
xuxzh1 committed
1157
            kv_cache = self.kv_cache
OlivierDehaene's avatar
OlivierDehaene committed
1158
1159
1160
1161
1162
            block_tables = batch.block_tables_tensor
            slots = batch.slots[batch.slot_indices]
            input_lengths = batch.input_lengths_tensor
            max_s = batch.max_seqlen
            lm_head_indices = batch.prefill_head_indices
Nicolas Patry's avatar
Nicolas Patry committed
1163

xuxzh1's avatar
last  
xuxzh1 committed
1164
1165
1166
1167
1168
1169
        if cu_seqlen_prefill is None and self.max_past() is not None:
            # In decode, not prefill, we're actually overwriting the KV-cache
            # in a circular buffer mode.
            # This makes sure the max_s for the decode pass is correct.
            max_s = min(self.max_past(), max_s)

1170
        bs = input_ids.shape[0]
OlivierDehaene's avatar
OlivierDehaene committed
1171
1172
1173
1174
1175
1176
1177
1178
        sorted_padded_bs = sorted([k for k in self.cuda_graphs.keys() if k >= bs])
        if sorted_padded_bs:
            # Get associated cuda graph
            cuda_graph = self.cuda_graphs[sorted_padded_bs[0]]
        else:
            cuda_graph = None

        if cu_seqlen_prefill is not None or cuda_graph is None:
xuxzh1's avatar
last  
xuxzh1 committed
1179
1180
            input_lengths = Seqlen(input_lengths=input_lengths)
            logits, speculative_logits = self.model.forward(
1181
1182
1183
1184
1185
1186
1187
1188
                input_ids=input_ids,
                position_ids=position_ids,
                cu_seqlen_prefill=cu_seqlen_prefill,
                kv_cache=kv_cache,
                block_tables=block_tables,
                slots=slots,
                input_lengths=input_lengths,
                max_s=max_s,
xuxzh1's avatar
last  
xuxzh1 committed
1189
                prefill_cache_indices=batch.prefill_cache_indices,
1190
                lm_head_indices=lm_head_indices,
xuxzh1's avatar
last  
xuxzh1 committed
1191
                adapter_data=adapter_data,
1192
            )
xuxzh1's avatar
last  
xuxzh1 committed
1193
1194
1195
            if batch.prefill_cache_indices is not None:
                batch.prefill_cache_indices = None
            return logits, speculative_logits
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211

        # Copy inputs to the static inputs of the cuda graph
        # Static inputs are potentially padded
        cuda_graph["input_ids"][: input_ids.shape[0]] = input_ids
        cuda_graph["position_ids"][: position_ids.shape[0]] = position_ids
        cuda_graph["block_tables"][
            : block_tables.shape[0], : block_tables.shape[1]
        ] = block_tables
        cuda_graph["slots"].fill_(-1)
        cuda_graph["slots"][: slots.shape[0]] = slots
        cuda_graph["input_lengths"].zero_()
        cuda_graph["input_lengths"][: input_lengths.shape[0]] = input_lengths

        # Replay the graph
        cuda_graph["graph"].replay()
        # Slice output to the correct shape
1212
1213
1214
1215
1216
1217
1218
        speculative_logits = (
            cuda_graph["speculative_logits"][:bs]
            if cuda_graph["speculative_logits"] is not None
            else None
        )
        logits = cuda_graph["logits"][:bs]
        return logits, speculative_logits
1219
1220
1221
1222

    @tracer.start_as_current_span("generate_token")
    def generate_token(
        self, batch: FlashCausalLMBatch
1223
1224
    ) -> Tuple[List[Generation], Optional[FlashCausalLMBatch], Tuple[int, int]]:
        start = time.time_ns()
1225
        prefill = batch.cu_seqlen_prefill is not None
1226
        prefill_logprobs = batch.prefill_next_token_indices is not None
1227

xuxzh1's avatar
last  
xuxzh1 committed
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
        # Update adapter indices for speculative tokens (if present)
        adapter_meta = batch.adapter_meta
        if batch.speculative_ids is not None:
            B, speculative_length = batch.speculative_ids.shape
            new_length = speculative_length + 1
            adapter_indices = (
                adapter_meta.adapter_indices.unsqueeze(-1)
                .expand(B, new_length)
                .reshape(-1)
            )
            adapter_segments = adapter_meta.adapter_segments * new_length
            adapter_meta = AdapterBatchMetadata(
                adapter_indices=adapter_indices,
                adapter_set=adapter_meta.adapter_set,
                adapter_segments=adapter_segments,
                segment_indices=adapter_meta.segment_indices,
1244
            )
1245

xuxzh1's avatar
last  
xuxzh1 committed
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
        # Assign pointers to adapter weights
        # TODO(travis): don't update this if indices haven't changed
        adapter_data = AdapterBatchData.from_meta(
            adapter_meta,
            self.layer_to_adapter_weights,
            prefill,
            batch.prefill_head_indices,
        )

        out, speculative_logits = self.forward(batch, adapter_data)
1256

1257
1258
        if prefill:
            next_token_logits = (
1259
                out[batch.prefill_next_token_indices] if prefill_logprobs else out
1260
            )
Nicolas Patry's avatar
Nicolas Patry committed
1261
1262
            if speculative_logits is not None:
                speculative_logits = (
OlivierDehaene's avatar
OlivierDehaene committed
1263
1264
1265
                    speculative_logits[batch.prefill_next_token_indices]
                    if prefill_logprobs
                    else speculative_logits
Nicolas Patry's avatar
Nicolas Patry committed
1266
                )
xuxzh1's avatar
last  
xuxzh1 committed
1267
1268
1269
1270
            next_adapter_indices = batch.adapter_meta.adapter_indices.new_empty(
                len(batch)
            )

1271
1272
        else:
            next_token_logits = out
xuxzh1's avatar
last  
xuxzh1 committed
1273
            next_adapter_indices = batch.adapter_meta.adapter_indices
1274

Nicolas Patry's avatar
Nicolas Patry committed
1275
        speculate = get_speculate()
OlivierDehaene's avatar
OlivierDehaene committed
1276
1277
1278
1279
1280
1281
1282
1283
1284
        (
            next_input_ids,
            next_token_logprobs,
            logprobs,
            accepted_ids,
            speculative_ids,
        ) = batch.next_token_chooser(
            batch.all_input_ids_tensor[:, : batch.max_seqlen],
            next_token_logits,
Nicolas Patry's avatar
Nicolas Patry committed
1285
            speculate,
OlivierDehaene's avatar
OlivierDehaene committed
1286
1287
            batch.speculative_ids,
            speculative_logits,
1288
1289
        )

Nicolas Patry's avatar
Nicolas Patry committed
1290
        batch_top_token_ids, batch_top_token_logprobs = batch_top_tokens(
Nicolas Patry's avatar
Nicolas Patry committed
1291
            batch.top_n_tokens, batch.top_n_tokens_tensor, logprobs, accepted_ids
Nicolas Patry's avatar
Nicolas Patry committed
1292
1293
        )

1294
        if prefill:
1295
            if len(batch) > 1 and prefill_logprobs:
1296
1297
                # We create the prefill_tokens_indices tensor that will be used to gather prefill logprobs
                # When batch == 1, we will just use the batch.input_ids values directly
1298
                prefill_tokens_indices = batch.input_ids.new_zeros(len(out))
1299
1300

            next_position_ids = batch.position_ids.new_empty(len(batch))
1301
1302
1303
            batch.slot_indices = batch.slot_indices[batch.cu_seqlen_prefill[1:] - 1]
            # We do not need cu_seqlen_prefill anymore
            batch.cu_seqlen_prefill = None
1304
1305
1306
1307
        else:
            prefill_logprobs = None
            next_position_ids = batch.position_ids

1308
1309
1310
1311
1312
        # Cumulative length
        cumulative_length = 0

        # Results
        generations: List[Generation] = []
1313
        stopped = True
1314
1315

        # Zipped iterator
OlivierDehaene's avatar
OlivierDehaene committed
1316
        iterator = zip(batch.input_lengths, batch.all_input_ids, accepted_ids)
1317

1318
1319
1320
1321
        # We do two for loops as the first one can run completely asynchronously from the GPU while for the second
        # one, we need to first do a GPU <-> CPU sync
        # It is faster if we delay this sync for the maximum amount of time

1322
        # For each member of the batch
Nicolas Patry's avatar
Nicolas Patry committed
1323
        index = 0
OlivierDehaene's avatar
OlivierDehaene committed
1324
        for i, (input_length, all_input_ids, n_accepted_ids) in enumerate(iterator):
1325
            # Indexing metadata
1326
1327
1328
            start_index = cumulative_length
            end_index = cumulative_length + input_length

1329
            if prefill:
1330
1331
1332
1333
1334
                # Indexing metadata
                out_start_index = batch.prefill_cu_outlens[i]
                out_end_index = batch.prefill_cu_outlens[i + 1]
                out_length = out_end_index - out_start_index

1335
1336
1337
1338
                # Initialize position_ids
                # In decode, we do not need this as we can just increment position ids
                next_position_ids[i] = batch.position_ids[end_index - 1]

xuxzh1's avatar
last  
xuxzh1 committed
1339
1340
1341
1342
1343
1344
                # Initialize adapter indices
                # In decode, we only have one token per row in the batch, so grab last index
                next_adapter_indices[i] = batch.adapter_meta.adapter_indices[
                    end_index - 1
                ]

1345
1346
                # Used to gather prefill logprobs
                # Copy batch.input_ids to prefill_token_indices
1347
1348
                if prefill_logprobs:
                    if len(batch) > 1:
drbh's avatar
drbh committed
1349
1350
1351
                        prefill_tokens_indices[out_start_index : out_end_index - 1] = (
                            batch.input_ids[start_index + 1 : start_index + out_length]
                        )
1352
1353
1354
1355
1356
                    else:
                        # Set prefill_tokens_indices to the correct slice
                        prefill_tokens_indices = batch.input_ids[
                            start_index + 1 : start_index + out_length
                        ]
1357

Nicolas Patry's avatar
Nicolas Patry committed
1358
1359
1360
            for j in range(n_accepted_ids):
                batch.all_input_ids_tensor[i, input_length + j] = next_input_ids[index]
                index += 1
1361
1362
1363

            cumulative_length += input_length

drbh's avatar
drbh committed
1364
        # Update values
Nicolas Patry's avatar
Nicolas Patry committed
1365
1366
1367
1368
1369
        batch.input_ids = next_input_ids[accepted_ids.cumsum(dim=-1) - 1]
        batch.speculative_ids = speculative_ids
        batch.position_ids = next_position_ids + accepted_ids
        batch.input_lengths_tensor += accepted_ids
        batch.slot_indices += accepted_ids
xuxzh1's avatar
last  
xuxzh1 committed
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
        batch.adapter_meta.adapter_indices = next_adapter_indices

        if prefill:
            # adjust segment lengths to account for all request lengths being 1 during decoding
            adapter_segments, _ = find_segments(batch.adapter_meta.adapter_indices)
            batch.adapter_meta.adapter_segments = torch.tensor(
                adapter_segments,
                dtype=torch.int32,
                device=batch.adapter_meta.adapter_segments.device,
            )
1380

1381
        if prefill and prefill_logprobs:
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
            # Get prefill logprobs
            prefill_logprobs_tensor = torch.log_softmax(out, -1)
            prefill_logprobs = torch.gather(
                prefill_logprobs_tensor, 1, prefill_tokens_indices.view(-1, 1)
            )
            # GPU <-> CPU sync
            prefill_logprobs = prefill_logprobs.view(-1).tolist()

        # GPU <-> CPU sync
        next_token_logprobs = next_token_logprobs.tolist()
Nicolas Patry's avatar
Nicolas Patry committed
1392
        next_token_ids = next_input_ids.tolist()
1393
1394
        accepted_ids = accepted_ids.tolist()
        start_decode = time.time_ns()
1395
1396
1397
1398
1399

        # Zipped iterator
        iterator = zip(
            batch.requests,
            batch.input_lengths,
1400
1401
            batch.prefix_offsets,
            batch.read_offsets,
1402
1403
            batch.stopping_criterias,
            batch.all_input_ids,
1404
1405
            batch.next_token_chooser.do_sample,
            batch.next_token_chooser.seeds,
Nicolas Patry's avatar
Nicolas Patry committed
1406
            batch.top_n_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
1407
            accepted_ids,
Nicolas Patry's avatar
Nicolas Patry committed
1408
1409
            batch_top_token_ids,
            batch_top_token_logprobs,
1410
1411
1412
        )

        # For each member of the batch
Nicolas Patry's avatar
Nicolas Patry committed
1413
        index = 0
1414
1415
1416
        for i, (
            request,
            input_length,
1417
1418
            prefix_offset,
            read_offset,
1419
1420
            stopping_criteria,
            all_input_ids,
1421
1422
            do_sample,
            seed,
Nicolas Patry's avatar
Nicolas Patry committed
1423
            top_n_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
1424
            n_accepted_ids,
Nicolas Patry's avatar
Nicolas Patry committed
1425
1426
            top_token_ids,
            top_token_logprobs,
1427
        ) in enumerate(iterator):
1428
            # Append next token to all tokens
Nicolas Patry's avatar
Nicolas Patry committed
1429
1430
1431
            next_token_texts = []
            left = 0

xuxzh1's avatar
last  
xuxzh1 committed
1432
1433
1434
1435
            if n_accepted_ids > 1:
                if RANK == 0:
                    logger.debug(f"Speculated ids {n_accepted_ids - 1}")

Nicolas Patry's avatar
Nicolas Patry committed
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
            current_stopped = False
            for j in range(index, index + n_accepted_ids):
                # Generated token
                next_token_id = next_token_ids[j]
                all_input_ids.append(next_token_id)
                next_token_text, prefix_offset, read_offset = self.decode_token(
                    all_input_ids,
                    prefix_offset,
                    read_offset,
                )
                next_token_texts.append(next_token_text)
1447

Nicolas Patry's avatar
Nicolas Patry committed
1448
1449
1450
1451
                stop, reason = stopping_criteria(
                    next_token_id,
                    next_token_text,
                )
1452

Nicolas Patry's avatar
Nicolas Patry committed
1453
1454
1455
1456
1457
1458
1459
                if stop:
                    left = index + n_accepted_ids - j - 1
                    current_stopped = True
                    break
                else:
                    current_stopped = False
            stopped = stopped and current_stopped
1460

OlivierDehaene's avatar
OlivierDehaene committed
1461
1462
1463
1464
            _next_token_ids = next_token_ids[index : index + n_accepted_ids - left]
            _next_token_logprobs = next_token_logprobs[
                index : index + n_accepted_ids - left
            ]
Nicolas Patry's avatar
Nicolas Patry committed
1465
            index += n_accepted_ids
1466

1467
1468
1469
1470
1471
            # Shard generations
            # All generations will be appended in the rust sharded client
            if i % self.world_size == self.rank:
                if stop:
                    # Decode generated tokens
1472
1473
                    output_text, _, _ = self.decode_token(
                        all_input_ids,
OlivierDehaene's avatar
OlivierDehaene committed
1474
1475
1476
1477
1478
1479
                        prefix_offset=len(all_input_ids)
                        - stopping_criteria.current_tokens
                        - 1,
                        read_offset=len(all_input_ids)
                        - stopping_criteria.current_tokens,
                        skip_special_tokens=True,
1480
1481
                    )
                    generated_text = GeneratedText(
1482
1483
1484
1485
                        output_text,
                        stopping_criteria.current_tokens,
                        reason,
                        seed if do_sample else None,
1486
1487
1488
1489
1490
                    )
                else:
                    generated_text = None

                # Prefill
1491
1492
1493
1494
                if prefill and request.prefill_logprobs:
                    out_start_index = batch.prefill_cu_outlens[i]
                    out_end_index = batch.prefill_cu_outlens[i + 1]

1495
1496
                    # Remove generated token to only have prefill and add nan for first prompt token
                    request_prefill_logprobs = [float("nan")] + prefill_logprobs[
1497
                        out_start_index : out_end_index - 1
1498
1499
1500
1501
1502
1503
1504
                    ]
                    prefill_token_ids = all_input_ids[:-1]
                    prefill_texts = self.tokenizer.batch_decode(
                        prefill_token_ids,
                        clean_up_tokenization_spaces=False,
                        skip_special_tokens=False,
                    )
Nicolas Patry's avatar
Nicolas Patry committed
1505
1506

                    prefill_tokens = Tokens(
OlivierDehaene's avatar
OlivierDehaene committed
1507
1508
1509
1510
                        prefill_token_ids,
                        request_prefill_logprobs,
                        prefill_texts,
                        is_special=[],
1511
1512
1513
1514
                    )
                else:
                    prefill_tokens = None

Nicolas Patry's avatar
Nicolas Patry committed
1515
                if top_n_tokens > 0:
Nicolas Patry's avatar
Nicolas Patry committed
1516
                    all_top_tokens = []
drbh's avatar
drbh committed
1517
                    for top_token_ids, top_token_logprobs in zip(
1518
1519
                        top_token_ids, top_token_logprobs
                    ):
Nicolas Patry's avatar
Nicolas Patry committed
1520
1521
1522
1523
1524
1525
                        toptoken_texts = self.tokenizer.batch_decode(
                            top_token_ids,
                            clean_up_tokenization_spaces=False,
                            skip_special_tokens=False,
                        )
                        special_toptokens = [
1526
1527
                            token_id in self.all_special_ids
                            for token_id in top_token_ids
Nicolas Patry's avatar
Nicolas Patry committed
1528
1529
1530
1531
1532
1533
1534
1535
1536
                        ]
                        top_tokens = Tokens(
                            top_token_ids,
                            top_token_logprobs,
                            toptoken_texts,
                            special_toptokens,
                        )
                        all_top_tokens.append(top_tokens)
                    top_tokens = all_top_tokens
Nicolas Patry's avatar
Nicolas Patry committed
1537
1538
1539
                else:
                    top_tokens = None

1540
1541
1542
                generation = Generation(
                    request.id,
                    prefill_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
1543
1544
1545
1546
1547
1548
                    Tokens(
                        _next_token_ids,
                        _next_token_logprobs,
                        next_token_texts,
                        [nid in self.all_special_ids for nid in _next_token_ids],
                    ),
1549
                    generated_text,
Nicolas Patry's avatar
Nicolas Patry committed
1550
                    top_tokens,
1551
1552
                )

1553
                generations.append(generation)
1554

drbh's avatar
drbh committed
1555
1556
1557
            # accept each new token for this specific request since we may
            # have more than one new token per request with speculative decoding
            for next_token_id in _next_token_ids:
OlivierDehaene's avatar
OlivierDehaene committed
1558
1559
1560
                batch.next_token_chooser = (
                    batch.next_token_chooser.advance_grammar_single(i, next_token_id)
                )
drbh's avatar
drbh committed
1561

1562
            # Update values
1563
            batch.input_lengths[i] = input_length + n_accepted_ids
Nicolas Patry's avatar
Nicolas Patry committed
1564
1565
            if batch.input_lengths[i] > batch.max_seqlen:
                batch.max_seqlen = batch.input_lengths[i]
1566
1567
            batch.prefix_offsets[i] = prefix_offset
            batch.read_offsets[i] = read_offset
1568
1569
            batch.all_input_ids[i] = all_input_ids

1570
1571
        if stopped:
            # No need to return a batch if we know that all requests stopped
1572
1573
1574
            forward_ns = start_decode - start
            decode_ns = time.time_ns() - start_decode
            return generations, None, (forward_ns, decode_ns)
1575

1576
1577
1578
        batch.prefill_cu_outlens = None
        batch.prefill_head_indices = None
        batch.prefill_next_token_indices = None
1579

1580
1581
1582
        forward_ns = start_decode - start
        decode_ns = time.time_ns() - start_decode
        return generations, batch, (forward_ns, decode_ns)