lib.rs 24.3 KB
Newer Older
1
mod health;
2
/// Text Generation Inference Webserver
3
mod infer;
4
mod queue;
Olivier Dehaene's avatar
Olivier Dehaene committed
5
pub mod server;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
6
mod validation;
Olivier Dehaene's avatar
Olivier Dehaene committed
7

8
use infer::{Infer, InferError, InferStreamResponse};
9
use queue::{Entry, Queue};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
10
use serde::{Deserialize, Serialize};
11
12
use tokio::sync::OwnedSemaphorePermit;
use tokio_stream::wrappers::UnboundedReceiverStream;
13
use utoipa::ToSchema;
Olivier Dehaene's avatar
Olivier Dehaene committed
14
use validation::Validation;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
15

16
17
18
19
20
21
22
/// Type alias for generation responses
pub(crate) type GenerateStreamResponse = (
    OwnedSemaphorePermit,
    u32, // input_length
    UnboundedReceiverStream<Result<InferStreamResponse, InferError>>,
);

drbh's avatar
drbh committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#[derive(Clone, Deserialize, ToSchema)]
pub(crate) struct VertexInstance {
    #[schema(example = "What is Deep Learning?")]
    pub inputs: String,
    #[schema(nullable = true, default = "null", example = "null")]
    pub parameters: Option<GenerateParameters>,
}

#[derive(Deserialize, ToSchema)]
pub(crate) struct VertexRequest {
    #[serde(rename = "instances")]
    pub instances: Vec<VertexInstance>,
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct VertexResponse {
    pub predictions: Vec<String>,
}

42
43
/// Hub type
#[derive(Clone, Debug, Deserialize)]
44
pub struct HubModelInfo {
45
46
47
48
49
50
    #[serde(rename(deserialize = "id"))]
    pub model_id: String,
    pub sha: Option<String>,
    pub pipeline_tag: Option<String>,
}

51
52
53
#[derive(Clone, Deserialize, Default)]
pub struct HubTokenizerConfig {
    pub chat_template: Option<String>,
54
    #[serde(deserialize_with = "token_serde::deserialize")]
55
    pub bos_token: Option<String>,
56
    #[serde(deserialize_with = "token_serde::deserialize")]
57
    pub eos_token: Option<String>,
58
59
60
}

impl HubTokenizerConfig {
61
    pub fn from_file(filename: &std::path::Path) -> Self {
62
63
64
65
66
        let content = std::fs::read_to_string(filename).unwrap();
        serde_json::from_str(&content).unwrap_or_default()
    }
}

drbh's avatar
drbh committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
mod json_object_or_string_to_string {
    use serde::{Deserialize, Deserializer};
    use serde_json::Value;

    // A custom deserializer that treats both strings and objects as strings.
    // This provides flexibility with input formats for the 'grammar' field.
    pub fn deserialize<'de, D>(deserializer: D) -> Result<String, D::Error>
    where
        D: Deserializer<'de>,
    {
        let value = Value::deserialize(deserializer)?;

        match value {
            Value::String(s) => Ok(s),
            // Safely handle serialization and return an error if it fails
            Value::Object(o) => {
                serde_json::to_string(&o).map_err(|e| serde::de::Error::custom(e.to_string()))
            }
            _ => Err(serde::de::Error::custom(
                "expected string or object for grammar",
            )),
        }
    }
}

drbh's avatar
drbh committed
92
#[derive(Clone, Debug, Deserialize, ToSchema)]
drbh's avatar
drbh committed
93
94
95
96
97
98
99
100
101
102
103
#[serde(tag = "type", content = "value")]
pub(crate) enum GrammarType {
    #[serde(
        rename = "json",
        deserialize_with = "json_object_or_string_to_string::deserialize"
    )]
    Json(String),
    #[serde(rename = "regex")]
    Regex(String),
}

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
mod token_serde {
    use super::*;
    use serde::de;
    use serde::Deserializer;
    use serde_json::Value;

    pub fn deserialize<'de, D>(deserializer: D) -> Result<Option<String>, D::Error>
    where
        D: Deserializer<'de>,
    {
        let value = Value::deserialize(deserializer)?;

        match value {
            Value::String(s) => Ok(Some(s)),
            Value::Object(map) => {
                if let Some(content) = map.get("content").and_then(|v| v.as_str()) {
                    Ok(Some(content.to_string()))
                } else {
                    Err(de::Error::custom(
                        "content key not found in structured token",
                    ))
                }
            }
            _ => Err(de::Error::custom("invalid token format")),
        }
    }
}

132
133
#[derive(Clone, Debug, Serialize, ToSchema)]
pub struct Info {
134
    /// Model info
135
136
137
138
    #[schema(example = "bigscience/blomm-560m")]
    pub model_id: String,
    #[schema(nullable = true, example = "e985a63cdc139290c5f700ff1929f0b5942cced2")]
    pub model_sha: Option<String>,
139
140
141
142
    #[schema(example = "torch.float16")]
    pub model_dtype: String,
    #[schema(example = "cuda")]
    pub model_device_type: String,
143
144
    #[schema(nullable = true, example = "text-generation")]
    pub model_pipeline_tag: Option<String>,
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    /// Router Parameters
    #[schema(example = "128")]
    pub max_concurrent_requests: usize,
    #[schema(example = "2")]
    pub max_best_of: usize,
    #[schema(example = "4")]
    pub max_stop_sequences: usize,
    #[schema(example = "1024")]
    pub max_input_length: usize,
    #[schema(example = "2048")]
    pub max_total_tokens: usize,
    #[schema(example = "1.2")]
    pub waiting_served_ratio: f32,
    #[schema(example = "32000")]
    pub max_batch_total_tokens: u32,
    #[schema(example = "20")]
    pub max_waiting_tokens: usize,
162
163
    #[schema(nullable = true, example = "null")]
    pub max_batch_size: Option<usize>,
164
165
166
    #[schema(example = "2")]
    pub validation_workers: usize,
    /// Router Info
167
168
169
170
    #[schema(example = "0.5.0")]
    pub version: &'static str,
    #[schema(nullable = true, example = "null")]
    pub sha: Option<&'static str>,
171
172
    #[schema(nullable = true, example = "null")]
    pub docker_label: Option<&'static str>,
173
174
}

drbh's avatar
drbh committed
175
#[derive(Clone, Debug, Deserialize, ToSchema, Default)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
176
pub(crate) struct GenerateParameters {
177
178
179
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 1)]
    pub best_of: Option<usize>,
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 0.5
    )]
    pub temperature: Option<f32>,
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 1.03
    )]
    pub repetition_penalty: Option<f32>,
    #[serde(default)]
197
198
199
200
201
202
203
204
    #[schema(
        exclusive_minimum = -2.0,
        nullable = true,
        default = "null",
        example = 0.1
    )]
    pub frequency_penalty: Option<f32>,
    #[serde(default)]
205
206
207
208
209
210
211
212
213
214
215
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 10)]
    pub top_k: Option<i32>,
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub top_p: Option<f32>,
216
    #[serde(default)]
217
218
219
220
221
222
223
224
225
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub typical_p: Option<f32>,
    #[serde(default)]
226
    #[schema(default = "false", example = true)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
227
228
    pub do_sample: bool,
    #[serde(default = "default_max_new_tokens")]
229
    #[schema(nullable = true, default = "100", example = "20")]
230
    pub max_new_tokens: Option<u32>,
OlivierDehaene's avatar
OlivierDehaene committed
231
    #[serde(default)]
232
    #[schema(nullable = true, default = "null", example = false)]
233
234
    pub return_full_text: Option<bool>,
    #[serde(default)]
235
    #[schema(inline, max_items = 4, example = json ! (["photographer"]))]
236
    pub stop: Vec<String>,
OlivierDehaene's avatar
OlivierDehaene committed
237
    #[serde(default)]
238
    #[schema(nullable = true, default = "null", example = "null")]
239
240
    pub truncate: Option<usize>,
    #[serde(default)]
241
242
243
    #[schema(default = "false", example = true)]
    pub watermark: bool,
    #[serde(default)]
244
    #[schema(default = "true")]
OlivierDehaene's avatar
OlivierDehaene committed
245
    pub details: bool,
246
    #[serde(default)]
247
248
249
    #[schema(default = "true")]
    pub decoder_input_details: bool,
    #[serde(default)]
250
251
252
253
254
255
    #[schema(
        exclusive_minimum = 0,
        nullable = true,
        default = "null",
        example = "null"
    )]
256
    pub seed: Option<u64>,
Nicolas Patry's avatar
Nicolas Patry committed
257
258
259
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 5)]
    pub top_n_tokens: Option<u32>,
drbh's avatar
drbh committed
260
261
    #[serde(default)]
    pub grammar: Option<GrammarType>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
262
263
}

264
fn default_max_new_tokens() -> Option<u32> {
265
    Some(100)
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
266
267
268
269
}

fn default_parameters() -> GenerateParameters {
    GenerateParameters {
270
        best_of: None,
271
272
        temperature: None,
        repetition_penalty: None,
273
        frequency_penalty: None,
274
275
        top_k: None,
        top_p: None,
276
        typical_p: None,
277
        do_sample: true,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
278
        max_new_tokens: default_max_new_tokens(),
279
        return_full_text: None,
280
        stop: Vec::new(),
281
        truncate: None,
282
        watermark: false,
OlivierDehaene's avatar
OlivierDehaene committed
283
        details: false,
284
        decoder_input_details: false,
285
        seed: None,
Nicolas Patry's avatar
Nicolas Patry committed
286
        top_n_tokens: None,
drbh's avatar
drbh committed
287
        grammar: None,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
288
289
290
    }
}

291
#[derive(Clone, Deserialize, Serialize, ToSchema)]
292
293
294
pub(crate) struct ChatCompletion {
    pub id: String,
    pub object: String,
295
    #[schema(example = "1706270835")]
296
    pub created: u64,
297
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
298
299
300
301
302
303
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionComplete>,
    pub usage: Usage,
}

304
#[derive(Clone, Deserialize, Serialize, ToSchema)]
305
306
307
pub(crate) struct ChatCompletionComplete {
    pub index: u32,
    pub message: Message,
308
    pub logprobs: Option<ChatCompletionLogprobs>,
309
310
311
    pub finish_reason: String,
}

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprobs {
    content: Vec<ChatCompletionLogprob>,
}

impl From<(Token, Vec<Token>)> for ChatCompletionLogprobs {
    fn from(value: (Token, Vec<Token>)) -> Self {
        let (token, top_tokens) = value;

        Self {
            content: vec![ChatCompletionLogprob {
                token: token.text,
                logprob: token.logprob,
                top_logprobs: top_tokens
                    .into_iter()
                    .map(|t| ChatCompletionTopLogprob {
                        token: t.text,
                        logprob: t.logprob,
                    })
                    .collect(),
            }],
        }
    }
}

impl From<(Vec<Token>, Vec<Vec<Token>>)> for ChatCompletionLogprobs {
    fn from(value: (Vec<Token>, Vec<Vec<Token>>)) -> Self {
        let (tokens, top_tokens) = value;
        Self {
            content: tokens
                .into_iter()
                .zip(top_tokens)
                .map(|(t, top_t)| ChatCompletionLogprob {
                    token: t.text,
                    logprob: t.logprob,
                    top_logprobs: top_t
                        .into_iter()
                        .map(|t| ChatCompletionTopLogprob {
                            token: t.text,
                            logprob: t.logprob,
                        })
                        .collect(),
                })
                .collect(),
        }
    }
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprob {
    token: String,
    logprob: f32,
    top_logprobs: Vec<ChatCompletionTopLogprob>,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionTopLogprob {
    token: String,
    logprob: f32,
}

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
#[derive(Clone, Deserialize, Serialize)]
pub(crate) struct Usage {
    pub prompt_tokens: u32,
    pub completion_tokens: u32,
    pub total_tokens: u32,
}

impl ChatCompletion {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
        output: String,
        created: u64,
        details: Details,
        return_logprobs: bool,
    ) -> Self {
        Self {
            id: String::new(),
            object: "text_completion".into(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionComplete {
                index: 0,
                message: Message {
                    role: "assistant".into(),
                    content: output,
400
                    name: None,
401
402
                },
                logprobs: return_logprobs
403
                    .then(|| ChatCompletionLogprobs::from((details.tokens, details.top_tokens))),
404
405
406
407
408
409
410
411
412
413
414
                finish_reason: details.finish_reason.to_string(),
            }],
            usage: Usage {
                prompt_tokens: details.prefill.len() as u32,
                completion_tokens: details.generated_tokens,
                total_tokens: details.prefill.len() as u32 + details.generated_tokens,
            },
        }
    }
}

415
#[derive(Clone, Deserialize, Serialize, ToSchema)]
416
417
418
pub(crate) struct ChatCompletionChunk {
    pub id: String,
    pub object: String,
419
    #[schema(example = "1706270978")]
420
    pub created: u64,
421
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
422
423
424
425
426
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionChoice>,
}

427
#[derive(Clone, Deserialize, Serialize, ToSchema)]
428
429
430
pub(crate) struct ChatCompletionChoice {
    pub index: u32,
    pub delta: ChatCompletionDelta,
431
    pub logprobs: Option<ChatCompletionLogprobs>,
432
433
434
    pub finish_reason: Option<String>,
}

435
#[derive(Clone, Debug, Deserialize, Serialize, ToSchema)]
436
pub(crate) struct ChatCompletionDelta {
437
    #[schema(example = "user")]
438
    pub role: String,
439
    #[schema(example = "What is Deep Learning?")]
440
441
442
443
444
445
446
447
448
449
    pub content: String,
}

impl ChatCompletionChunk {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
        delta: String,
        created: u64,
        index: u32,
450
        logprobs: Option<ChatCompletionLogprobs>,
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
        finish_reason: Option<String>,
    ) -> Self {
        Self {
            id: String::new(),
            object: "text_completion".to_string(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionChoice {
                index,
                delta: ChatCompletionDelta {
                    role: "assistant".to_string(),
                    content: delta,
                },
                logprobs,
                finish_reason,
            }],
        }
    }
}

fn default_request_messages() -> Vec<Message> {
    vec![Message {
        role: "user".to_string(),
        content: "My name is David and I".to_string(),
476
        name: None,
477
478
479
480
481
482
    }]
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct ChatRequest {
    /// UNUSED
483
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
484
    /// ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
485
486
    pub model: String,
    /* NOTE: UNUSED */
487
488
489
490
491
492
493
    /// A list of messages comprising the conversation so far.
    #[serde(default = "default_request_messages")]
    pub messages: Vec<Message>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
494
    #[schema(example = "1.0")]
495
496
497
498
499
500
501
502
503
504
505
506
507
508
    pub frequency_penalty: Option<f32>,

    /// UNUSED
    /// Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens
    /// (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically,
    /// the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model,
    /// but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should
    /// result in a ban or exclusive selection of the relevant token.
    #[serde(default)]
    pub logit_bias: Option<Vec<f32>>,

    /// Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each
    /// output token returned in the content of message.
    #[serde(default)]
509
    #[schema(example = "false")]
510
511
512
513
514
    pub logprobs: Option<bool>,

    /// An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with
    /// an associated log probability. logprobs must be set to true if this parameter is used.
    #[serde(default)]
515
    #[schema(example = "5")]
516
517
518
519
    pub top_logprobs: Option<u32>,

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
520
    #[schema(example = "32")]
521
522
523
524
525
526
    pub max_tokens: Option<u32>,

    /// UNUSED
    /// How many chat completion choices to generate for each input message. Note that you will be charged based on the
    /// number of generated tokens across all of the choices. Keep n as 1 to minimize costs.
    #[serde(default)]
527
    #[schema(nullable = true, example = "2")]
528
529
530
531
532
    pub n: Option<u32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far,
    /// increasing the model's likelihood to talk about new topics
    #[serde(default)]
533
    #[schema(nullable = true, example = 0.1)]
534
535
536
537
538
539
540
    pub presence_penalty: Option<f32>,

    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
541
542
543
544
545
546

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic.
    ///
    /// We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
547
    #[schema(nullable = true, example = 1.0)]
548
549
550
551
552
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
553
    #[schema(nullable = true, example = 0.95)]
554
    pub top_p: Option<f32>,
555
556
}

557
558
559
560
561
#[derive(Clone, Serialize, Deserialize)]
pub(crate) struct ChatTemplateInputs<'a> {
    messages: Vec<Message>,
    bos_token: Option<&'a str>,
    eos_token: Option<&'a str>,
562
    add_generation_prompt: bool,
563
564
}

565
566
567
568
569
570
#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct Message {
    #[schema(example = "user")]
    pub role: String,
    #[schema(example = "My name is David and I")]
    pub content: String,
571
572
    #[schema(example = "\"David\"")]
    pub name: Option<String>,
573
574
}

575
#[derive(Clone, Debug, Deserialize, ToSchema)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
576
pub(crate) struct GenerateRequest {
577
    #[schema(example = "My name is Olivier and I")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
578
579
580
581
582
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
}

583
584
585
586
587
588
589
#[derive(Clone, Debug, Deserialize, ToSchema)]
pub(crate) struct CompatGenerateRequest {
    #[schema(example = "My name is Olivier and I")]
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
    #[serde(default)]
OlivierDehaene's avatar
OlivierDehaene committed
590
    #[schema(default = "false")]
591
592
593
594
595
596
597
598
599
600
601
602
    pub stream: bool,
}

impl From<CompatGenerateRequest> for GenerateRequest {
    fn from(req: CompatGenerateRequest) -> Self {
        Self {
            inputs: req.inputs,
            parameters: req.parameters,
        }
    }
}

603
604
605
606
607
608
#[derive(Debug, Serialize, ToSchema)]
pub struct PrefillToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
609
    #[schema(nullable = true, example = - 0.34)]
610
611
612
    logprob: f32,
}

613
#[derive(Debug, Serialize, ToSchema, Clone)]
614
615
616
617
618
pub struct Token {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
619
    #[schema(nullable = true, example = - 0.34)]
620
    logprob: f32,
621
622
    #[schema(example = "false")]
    special: bool,
623
624
}

625
626
627
628
629
630
631
632
633
634
635
636
#[derive(Debug, Serialize, ToSchema)]
pub struct SimpleToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
    #[schema(example = 0)]
    start: usize,
    #[schema(example = 2)]
    stop: usize,
}

637
638
#[derive(Serialize, ToSchema)]
#[serde(rename_all(serialize = "snake_case"))]
639
#[schema(example = "Length")]
640
641
642
643
644
645
646
647
648
pub(crate) enum FinishReason {
    #[schema(rename = "length")]
    Length,
    #[serde(rename = "eos_token")]
    #[schema(rename = "eos_token")]
    EndOfSequenceToken,
    #[schema(rename = "stop_sequence")]
    StopSequence,
}
649

650
651
652
653
654
655
656
657
658
659
impl std::fmt::Display for FinishReason {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            FinishReason::Length => write!(f, "length"),
            FinishReason::EndOfSequenceToken => write!(f, "eos_token"),
            FinishReason::StopSequence => write!(f, "stop_sequence"),
        }
    }
}

660
661
662
663
664
665
666
667
668
669
670
671
#[derive(Serialize, ToSchema)]
pub(crate) struct BestOfSequence {
    #[schema(example = "test")]
    pub generated_text: String,
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
Nicolas Patry's avatar
Nicolas Patry committed
672
673
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
674
675
}

676
#[derive(Serialize, ToSchema)]
OlivierDehaene's avatar
OlivierDehaene committed
677
pub(crate) struct Details {
678
679
680
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
OlivierDehaene's avatar
OlivierDehaene committed
681
    pub generated_tokens: u32,
682
    #[schema(nullable = true, example = 42)]
683
    pub seed: Option<u64>,
684
685
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
686
687
    #[serde(skip_serializing_if = "Option::is_none")]
    pub best_of_sequences: Option<Vec<BestOfSequence>>,
Nicolas Patry's avatar
Nicolas Patry committed
688
689
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
OlivierDehaene's avatar
OlivierDehaene committed
690
691
}

692
#[derive(Serialize, ToSchema)]
693
pub(crate) struct GenerateResponse {
694
    #[schema(example = "test")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
695
    pub generated_text: String,
OlivierDehaene's avatar
OlivierDehaene committed
696
697
    #[serde(skip_serializing_if = "Option::is_none")]
    pub details: Option<Details>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
698
}
699

700
701
702
703
#[derive(Serialize, ToSchema)]
#[serde(transparent)]
pub(crate) struct TokenizeResponse(Vec<SimpleToken>);

704
705
706
707
708
709
#[derive(Serialize, ToSchema)]
pub(crate) struct StreamDetails {
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
710
    #[schema(nullable = true, example = 42)]
711
712
713
714
    pub seed: Option<u64>,
}

#[derive(Serialize, ToSchema)]
715
pub(crate) struct StreamResponse {
716
    pub index: u32,
717
    pub token: Token,
Nicolas Patry's avatar
Nicolas Patry committed
718
719
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Token>,
720
    #[schema(nullable = true, default = "null", example = "test")]
721
    pub generated_text: Option<String>,
722
723
    #[schema(nullable = true, default = "null")]
    pub details: Option<StreamDetails>,
724
725
}

726
#[derive(Serialize, ToSchema)]
727
728
pub(crate) struct ErrorResponse {
    pub error: String,
729
    pub error_type: String,
730
}
731
732

#[cfg(test)]
733
mod tests {
734
735
    use super::*;

736
737
    use tokenizers::Tokenizer;

738
    pub(crate) async fn get_tokenizer() -> Tokenizer {
739
740
741
742
        let api = hf_hub::api::sync::Api::new().unwrap();
        let repo = api.model("gpt2".to_string());
        let filename = repo.get("tokenizer.json").unwrap();
        Tokenizer::from_file(filename).unwrap()
743
    }
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796

    #[test]
    fn test_hub_nested_tokens_tokenizer_config() {
        // this is a subset of the tokenizer.json file
        // in this case we expect the tokens to be encoded as simple strings
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": "<|begin▁of▁sentence|>",
            "eos_token": "<|end▁of▁sentence|>"
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
        assert_eq!(config.chat_template, Some("test".to_string()));
        assert_eq!(
            config.bos_token,
            Some("<|begin▁of▁sentence|>".to_string())
        );
        assert_eq!(config.eos_token, Some("<|end▁of▁sentence|>".to_string()));

        // in this case we expect the tokens to be encoded as structured tokens
        // we want the content of the structured token
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": {
              "__type": "AddedToken",
              "content": "<|begin▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            },
            "eos_token": {
              "__type": "AddedToken",
              "content": "<|end▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            }
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
        assert_eq!(config.chat_template, Some("test".to_string()));
        assert_eq!(
            config.bos_token,
            Some("<|begin▁of▁sentence|>".to_string())
        );
        assert_eq!(config.eos_token, Some("<|end▁of▁sentence|>".to_string()));
    }
797
}