flash_causal_lm.py 39.8 KB
Newer Older
1
2
import math
import itertools
Nicolas Patry's avatar
Nicolas Patry committed
3
from text_generation_server.utils.tokens import batch_top_tokens
4
5
6
import torch
import torch.distributed

7
8
import numpy as np

9
10
from dataclasses import dataclass
from opentelemetry import trace
11
from transformers import PreTrainedTokenizerBase
12
from typing import Optional, Tuple, List, Type, Union, Dict
13

OlivierDehaene's avatar
OlivierDehaene committed
14
from text_generation_server.models import Model
Nicolas Patry's avatar
Nicolas Patry committed
15
from text_generation_server.utils.speculate import get_speculate
16
17
from text_generation_server.models.types import (
    Batch,
Nicolas Patry's avatar
Nicolas Patry committed
18
    Tokens,
19
20
21
    Generation,
    GeneratedText,
)
22
23
24
25
26
from text_generation_server.models.cache_manager import (
    get_cache_manager,
    set_cache_manager,
    BLOCK_SIZE,
)
27
from text_generation_server.pb import generate_pb2
28
from text_generation_server.utils import StoppingCriteria, HeterogeneousNextTokenChooser
29
from text_generation_server.utils.dist import MEMORY_FRACTION
30
31
32
33
34
35
36
37

tracer = trace.get_tracer(__name__)


@dataclass
class FlashCausalLMBatch(Batch):
    batch_id: int
    requests: List[generate_pb2.Request]
38
39
    # request id -> idx in list mapping
    requests_idx_mapping: Dict[int, int]
40
41

    # Decoder values
42
43
    input_ids: torch.Tensor
    position_ids: torch.Tensor
Nicolas Patry's avatar
Nicolas Patry committed
44
    speculative_ids: torch.Tensor
45

46
47
48
49
    # Flash Attention values

    # tensor of length b containing the cumulative sequence lengths of the sequences in the batch, only used in prefill
    cu_seqlen_prefill: Optional[torch.Tensor]
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

    # Paged Attention values

    # Set when creating the batch
    # CPU tensor of length b indicating the start of each sequence in slots
    start_slots: torch.Tensor
    # tensor of indices of the currently used slots, length = \sum_{i=0}^{b} s_i in prefill, length = b in decode
    slot_indices: torch.Tensor
    # List of tuple of ints representing the number of blocks and slots needed by each sequence
    needed_blocks_slots: Optional[List[Tuple[int, int]]]

    # Set in prefill by the CacheManager
    # list of length b of list of length s_i // block_size
    block_tables: Optional[List[List[int]]]
    # tensor of size [b, max_seqlen // block_size] holding the paged attention block tables for all sequences
    block_tables_tensor: Optional[torch.Tensor]
    # tensor of length \sum_{i=0}^{b} max_s_i  holding the paged attention slots for all sequences
    slots: Optional[torch.Tensor]

69
70
    max_seqlen: int

71
72
73
74
75
    # Prefill metadata tensors to efficiently compute logprobs
    prefill_head_indices: Optional[torch.Tensor]
    prefill_next_token_indices: Optional[torch.tensor]
    prefill_cu_outlens: Optional[List[int]]

76
77
    # All tokens
    all_input_ids: List[List[int]]
78
    all_input_ids_tensor: torch.Tensor
79
80
81

    # Lengths of all generations present in the batch
    input_lengths: List[int]
82
    input_lengths_tensor: torch.Tensor
83
84
    prefix_offsets: List[Optional[int]]
    read_offsets: List[Optional[int]]
85
86

    # Generation helpers
87
    next_token_chooser: HeterogeneousNextTokenChooser
88
    stopping_criterias: List[StoppingCriteria]
Nicolas Patry's avatar
Nicolas Patry committed
89
90
    top_n_tokens: List[int]
    top_n_tokens_tensor: torch.Tensor
91

92
93
94
95
    # Number of blocks in this batch
    blocks: int
    # Maximum number of blocks
    max_blocks: int
96

97
98
    def to_pb(self) -> generate_pb2.CachedBatch:
        return generate_pb2.CachedBatch(
99
            id=self.batch_id,
100
            request_ids=[r.id for r in self.requests],
101
            size=len(self),
102
            max_tokens=self.blocks * BLOCK_SIZE,
103
104
105
106
107
108
109
        )

    @classmethod
    def from_pb(
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
110
        dtype: torch.dtype,
111
        device: torch.device,
112
    ) -> "FlashCausalLMBatch":
113
114
115
116
117
118
119
120
121
122
        batch_inputs = []
        max_truncation = 0
        for r in pb.requests:
            batch_inputs.append(r.inputs)
            max_truncation = max(max_truncation, r.truncate)

        batch_tokenized_inputs = tokenizer(
            batch_inputs, truncation=True, max_length=max_truncation
        )["input_ids"]

123
        position_ids = []
Nicolas Patry's avatar
Nicolas Patry committed
124
        speculative_ids = []
125
        cu_seqlen_prefill = [0]
126
127
128
        needed_blocks_slots = []
        start_slots = []
        slot_indices = []
129
130

        input_lengths = []
131
132
        prefix_offsets = []
        read_offsets = []
133
        all_input_ids = []
134
        requests_idx_mapping = {}
135

136
137
138
139
140
141
        all_prefill_logprobs = True
        no_prefill_logprobs = True
        prefill_head_indices = []
        prefill_next_token_indices = []
        prefill_cu_outlens = [0]

142
        next_token_chooser_parameters = []
143
        stopping_criterias = []
Nicolas Patry's avatar
Nicolas Patry committed
144
        top_n_tokens = []
145
146
147

        # Cumulative length
        cumulative_length = 0
148
        cumulative_max_length = 0
149
        prefill_out_cumulative_length = 0
150

151
152
        blocks = 0
        max_seqlen = 0
153
        max_length = 0
154
        max_blocks = 0
155

156
        # Parse batch
157
158
159
        for i, (r, tokenized_input) in enumerate(
            zip(pb.requests, batch_tokenized_inputs)
        ):
160
161
162
            # request id -> idx in list mapping
            requests_idx_mapping[r.id] = i

163
            tokenized_input = tokenized_input[-r.truncate :]
164

165
166
            input_length = len(tokenized_input)
            input_lengths.append(input_length)
167

168
            prefix_offsets.append(input_length - 5)
169
            read_offsets.append(input_length)
170

171
            all_input_ids.append(tokenized_input)
172
173

            # Position ids
174
175
            request_position_ids = torch.arange(0, input_length, dtype=torch.int32)
            position_ids.append(request_position_ids)
176
177

            # Add cumulative lengths of all previous inputs
178
            cu_seqlen_prefill.append(cumulative_length + input_length)
179

180
            next_token_chooser_parameters.append(r.parameters)
181

182
183
184
            stopping_criteria = StoppingCriteria.from_pb(
                r.stopping_parameters, tokenizer
            )
185
            max_new_tokens = stopping_criteria.max_new_tokens
186
            stopping_criterias.append(stopping_criteria)
Nicolas Patry's avatar
Nicolas Patry committed
187
            top_n_tokens.append(r.top_n_tokens)
188

189
190
            # Paged attention
            # Remove one as the first token des not have a past
Nicolas Patry's avatar
Nicolas Patry committed
191
192
            speculative_length = get_speculate()
            total_tokens = input_length + max_new_tokens - 1 + speculative_length
193
194
195
196
197
198
199
200
201
202
203
204
            needed_blocks = math.ceil(total_tokens / BLOCK_SIZE)
            blocks += needed_blocks
            needed_blocks_slots.append((needed_blocks, total_tokens))
            start_slots.append(cumulative_max_length)

            request_slot_indices = torch.arange(
                cumulative_max_length,
                cumulative_max_length + input_length,
                dtype=torch.int64,
            )
            slot_indices.append(request_slot_indices)

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
            all_prefill_logprobs = all_prefill_logprobs and r.prefill_logprobs
            no_prefill_logprobs = no_prefill_logprobs and not r.prefill_logprobs

            if r.prefill_logprobs:
                prefill_head_indices.append(request_position_ids + cumulative_length)
                prefill_next_token_indices.append(
                    prefill_out_cumulative_length + input_length - 1
                )
                prefill_cu_outlens.append(prefill_out_cumulative_length + input_length)
                prefill_out_cumulative_length += input_length
            else:
                prefill_head_indices.append(
                    torch.tensor(
                        [cumulative_length + input_length - 1], dtype=torch.int32
                    )
                )
                prefill_next_token_indices.append(prefill_out_cumulative_length)
                prefill_cu_outlens.append(prefill_out_cumulative_length + 1)
                prefill_out_cumulative_length += 1

225
226
            # Update
            cumulative_length += input_length
227
228
229
            cumulative_max_length += total_tokens
            max_seqlen = max(max_seqlen, input_length)
            max_blocks = max(max_blocks, needed_blocks)
OlivierDehaene's avatar
OlivierDehaene committed
230
231
232
            max_length = max(
                max_length, input_length + max_new_tokens + speculative_length
            )
233
234
235
236

        next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
            next_token_chooser_parameters, dtype, device
        )
237
        start_slots = torch.tensor(start_slots, dtype=torch.int64)
238
239
240
241
242
243
244

        # Padded all_input_ids_tensor
        all_input_ids_tensor = np.zeros(
            (len(all_input_ids), max_length), dtype=np.int64
        )
        for i, input_ids in enumerate(all_input_ids):
            all_input_ids_tensor[i, : len(input_ids)] = input_ids
245

246
247
248
249
250
        # Create tensors on device
        all_input_ids_tensor = torch.tensor(
            all_input_ids_tensor, dtype=torch.int64, device=device
        )

251
252
253
        if len(pb.requests) > 1:
            input_ids = np.concatenate(all_input_ids, dtype=np.int64)
            position_ids = torch.cat(position_ids)
254
            slot_indices = torch.cat(slot_indices)
255
256
257
        else:
            input_ids = all_input_ids[0]
            position_ids = position_ids[0]
258
            slot_indices = slot_indices[0]
259

260
261
        cu_seqlen_prefill = torch.tensor(
            cu_seqlen_prefill, device=device, dtype=torch.int32
262
263
264
        )
        position_ids = position_ids.to(device)
        slot_indices = slot_indices.to(device)
265
        input_ids = torch.tensor(input_ids, dtype=torch.int64, device=device)
266
267
        input_lengths_tensor = torch.tensor(
            input_lengths, dtype=torch.int32, device=device
268
        )
269

270
271
        if all_prefill_logprobs:
            prefill_head_indices = None
272
            prefill_next_token_indices = cu_seqlen_prefill[1:] - 1
273
        elif no_prefill_logprobs:
274
            prefill_head_indices = cu_seqlen_prefill[1:] - 1
275
276
277
278
279
280
281
282
            prefill_next_token_indices = None
        else:
            prefill_head_indices = torch.tensor(
                torch.cat(prefill_head_indices), dtype=torch.int64, device=device
            )
            prefill_next_token_indices = torch.tensor(
                prefill_next_token_indices, dtype=torch.int64, device=device
            )
Nicolas Patry's avatar
Nicolas Patry committed
283
284
285
        top_n_tokens_tensor = torch.tensor(
            top_n_tokens, device=device, dtype=torch.int64
        )
286

287
288
289
        return cls(
            batch_id=pb.id,
            requests=pb.requests,
290
            requests_idx_mapping=requests_idx_mapping,
291
292
            input_ids=input_ids,
            position_ids=position_ids,
293
            cu_seqlen_prefill=cu_seqlen_prefill,
294
295
296
297
298
299
            start_slots=start_slots,
            slot_indices=slot_indices,
            needed_blocks_slots=needed_blocks_slots,
            block_tables=None,
            block_tables_tensor=None,
            slots=None,
300
            max_seqlen=max_seqlen,
301
302
303
            prefill_head_indices=prefill_head_indices,
            prefill_next_token_indices=prefill_next_token_indices,
            prefill_cu_outlens=prefill_cu_outlens,
304
            input_lengths=input_lengths,
305
            input_lengths_tensor=input_lengths_tensor,
306
307
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
308
            all_input_ids=all_input_ids,
309
310
            all_input_ids_tensor=all_input_ids_tensor,
            next_token_chooser=next_token_chooser,
311
            stopping_criterias=stopping_criterias,
Nicolas Patry's avatar
Nicolas Patry committed
312
313
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
314
315
            blocks=blocks,
            max_blocks=max_blocks,
Nicolas Patry's avatar
Nicolas Patry committed
316
            speculative_ids=None,
317
318
        )

319
    @tracer.start_as_current_span("filter")
320
321
    def filter(self, request_ids: List[int]) -> "FlashCausalLMBatch":
        if len(request_ids) == 0:
322
323
            raise ValueError("Batch must have at least one request")
        # We assume that if len(requests) == len(self) then the requests are the same
324
        if len(request_ids) == len(self):
325
326
            return self

327
        device = self.input_ids.device
328

329
330
331
        # New values after filtering
        requests_idx_mapping = {}

332
333
334
        # Used to index into tensors
        indices = []

335
336
337
        # slots to keep after filtering
        slot_filtering_indices = torch.zeros(
            self.slots.shape[0], dtype=torch.bool, device=device
338
339
        )

340
        # Create on CPU to only move to GPU once instead of at every copy
341
        slot_indices = torch.empty(len(request_ids), dtype=torch.int64)
342
343
        max_seqlen = 0

344
        requests = []
345
346
        start_slots = []
        block_tables = []
347
348
        all_input_ids = []

349
        input_lengths = []
350
351
        prefix_offsets = []
        read_offsets = []
352

353
        stopping_criterias = []
Nicolas Patry's avatar
Nicolas Patry committed
354
        top_n_tokens = []
355

356
357
358
359
360
        blocks = 0
        max_blocks = 0
        # Cumulative length
        cumulative_max_length = 0

361
362
        for i, request_id in enumerate(request_ids):
            idx = self.requests_idx_mapping[request_id]
363
            indices.append(idx)
364
365
366
            requests_idx_mapping[request_id] = i

            requests.append(self.requests[idx])
367
368
369
370

            # Get length
            request_input_length = self.input_lengths[idx]
            max_seqlen = max(max_seqlen, request_input_length)
371

372
373
374
            all_input_ids.append(self.all_input_ids[idx])

            input_lengths.append(request_input_length)
375
376
            prefix_offsets.append(self.prefix_offsets[idx])
            read_offsets.append(self.read_offsets[idx])
377

378
379
            stopping_criteria = self.stopping_criterias[idx]
            stopping_criterias.append(stopping_criteria)
380

Nicolas Patry's avatar
Nicolas Patry committed
381
382
            top_n_tokens.append(self.top_n_tokens[idx])

383
            remaining_tokens = (
384
385
                stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
            )
386

387
388
389
390
391
            request_block_table = self.block_tables[idx]
            blocks += len(request_block_table)
            block_tables.append(request_block_table)
            start_slots.append(cumulative_max_length)

392
            # Copy to tensor (CPU)
393
            slot_indices[i] = cumulative_max_length + request_input_length - 1
394
395

            # Set slice
396
397
398
399
400
            slot_filtering_indices[
                self.start_slots[idx] : self.start_slots[idx]
                + request_input_length
                + remaining_tokens
                - 1
401
402
403
            ] = True

            cumulative_max_length += request_input_length + remaining_tokens - 1
404

405
406
407
408
409
410
411
412
413
            max_blocks = max(max_blocks, len(request_block_table))

        block_indices_to_free = []
        # Iterate on all requests
        for i, r in enumerate(self.requests):
            # Filter requests that are not part of the new batch
            if r.id not in requests_idx_mapping.keys():
                block_indices_to_free.extend(self.block_tables[i])
        # Free blocks
414
        get_cache_manager().free(block_indices_to_free)
415
416
417
        # Needed to avoid dropping blocks when the batches will go out of scope
        self.block_tables = None

418
419
420
421
        # Index into tensors
        input_ids = self.input_ids[indices]
        position_ids = self.position_ids[indices]
        all_input_ids_tensor = self.all_input_ids_tensor[indices]
422
423
424
        block_tables_tensor = self.block_tables_tensor[indices]
        input_lengths_tensor = self.input_lengths_tensor[indices]
        slots = self.slots[slot_filtering_indices]
425
        next_token_chooser = self.next_token_chooser.filter(indices)
Nicolas Patry's avatar
Nicolas Patry committed
426
        top_n_tokens_tensor = self.top_n_tokens_tensor[indices]
OlivierDehaene's avatar
OlivierDehaene committed
427
428
429
        speculative_ids = (
            self.speculative_ids[indices] if self.speculative_ids is not None else None
        )
430
431

        start_slots = torch.tensor(start_slots, dtype=torch.int64)
432

433
        # Move to GPU now that we have the whole tensor
434
        slot_indices = slot_indices.to(device)
435

436
        return type(self)(
437
438
439
440
441
            batch_id=self.batch_id,
            requests=requests,
            requests_idx_mapping=requests_idx_mapping,
            input_ids=input_ids,
            position_ids=position_ids,
442
            cu_seqlen_prefill=None,
443
444
445
446
447
448
            start_slots=start_slots,
            slot_indices=slot_indices,
            needed_blocks_slots=None,
            block_tables=block_tables,
            block_tables_tensor=block_tables_tensor,
            slots=slots,
449
            max_seqlen=max_seqlen,
450
451
452
            prefill_head_indices=None,
            prefill_next_token_indices=None,
            prefill_cu_outlens=None,
453
            input_lengths=input_lengths,
454
            input_lengths_tensor=input_lengths_tensor,
455
456
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
457
458
            all_input_ids=all_input_ids,
            all_input_ids_tensor=all_input_ids_tensor,
459
            next_token_chooser=next_token_chooser,
460
            stopping_criterias=stopping_criterias,
Nicolas Patry's avatar
Nicolas Patry committed
461
462
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
463
464
            blocks=blocks,
            max_blocks=max_blocks,
Nicolas Patry's avatar
Nicolas Patry committed
465
            speculative_ids=speculative_ids,
466
467
468
469
470
471
472
473
474
        )

    @classmethod
    @tracer.start_as_current_span("concatenate")
    def concatenate(cls, batches: List["FlashCausalLMBatch"]) -> "FlashCausalLMBatch":
        # Batch attributes
        requests = []
        requests_idx_mapping = {}

475
476
477
478
479
480
481
482
483
484
        blocks = 0
        total_batch_size = 0
        total_slots = 0
        max_blocks = 0
        max_length = 0
        max_seqlen = 0
        for b in batches:
            total_batch_size += len(b)
            total_slots += len(b.slots)
            blocks += b.blocks
OlivierDehaene's avatar
OlivierDehaene committed
485
486
487
            speculative_length = (
                b.speculative_ids.shape[1] if b.speculative_ids is not None else 0
            )
488
489
490
491
492
493
494
            max_blocks = max(max_blocks, b.max_blocks)
            max_seqlen = max(max_seqlen, b.max_seqlen)
            max_length = max(
                max_length,
                max(
                    input_length
                    + stopping_criteria.max_new_tokens
Nicolas Patry's avatar
Nicolas Patry committed
495
                    + speculative_length
496
497
498
499
500
501
                    - stopping_criteria.current_tokens
                    for input_length, stopping_criteria in zip(
                        b.input_lengths, b.stopping_criterias
                    )
                ),
            )
502
503
504

        input_ids = batches[0].input_ids.new_empty(total_batch_size)
        position_ids = batches[0].position_ids.new_empty(total_batch_size)
505
506
507
508
509
510
511
512
513
514
        slots = batches[0].slots.new_empty(total_slots)
        slot_indices = batches[0].slot_indices.new_empty(total_batch_size)
        input_lengths_tensor = batches[0].input_lengths_tensor.new_empty(
            total_batch_size
        )
        block_tables_tensor = batches[0].block_tables_tensor.new_zeros(
            (total_batch_size, max_blocks)
        )
        all_input_ids_tensor = batches[0].all_input_ids_tensor.new_zeros(
            (total_batch_size, max_length)
515
        )
Nicolas Patry's avatar
Nicolas Patry committed
516
517
518
        top_n_tokens_tensor = batches[0].top_n_tokens_tensor.new_zeros(
            total_batch_size,
        )
519

520
521
        start_slots = []
        block_tables = []
522
523
524
        all_input_ids = []

        input_lengths = []
525
526
        prefix_offsets = []
        read_offsets = []
527

528
        next_token_chooser_parameters = []
529
        stopping_criterias = []
Nicolas Patry's avatar
Nicolas Patry committed
530
        top_n_tokens = []
531

532
        # Cumulative length
533
        cumulative_batch_size = 0
534
        cumulative_slots = 0
535
536
537

        for i, batch in enumerate(batches):
            requests.extend(batch.requests)
538
539
540
541
542
543
544
545

            if i == 0:
                requests_idx_mapping = batch.requests_idx_mapping
            else:
                # We need to offset the mapping for each batch by the cumulative batch size
                for k, v in batch.requests_idx_mapping.items():
                    requests_idx_mapping[k] = v + cumulative_batch_size

546
547
            start_index = cumulative_batch_size
            end_index = cumulative_batch_size + len(batch)
548
549
            slots_start_index = cumulative_slots
            slots_end_index = cumulative_slots + len(batch.slots)
550
551
552
553

            # Copy tensors (GPU)
            input_ids[start_index:end_index] = batch.input_ids
            position_ids[start_index:end_index] = batch.position_ids
554
555
            slot_indices[start_index:end_index] = batch.slot_indices + cumulative_slots
            input_lengths_tensor[start_index:end_index] = batch.input_lengths_tensor
Nicolas Patry's avatar
Nicolas Patry committed
556
            top_n_tokens_tensor[start_index:end_index] = batch.top_n_tokens_tensor
557
            slots[slots_start_index:slots_end_index] = batch.slots
558

559
560
561
            all_input_ids_tensor[
                start_index:end_index, : batch.all_input_ids_tensor.shape[1]
            ] = batch.all_input_ids_tensor[:, :max_length]
562

563
564
565
            block_tables_tensor[
                start_index:end_index, : batch.block_tables_tensor.shape[1]
            ] = batch.block_tables_tensor[:, :max_blocks]
566

567
568
569
            start_slots.append(batch.start_slots + cumulative_slots)

            block_tables.extend(batch.block_tables)
570
571
            all_input_ids.extend(batch.all_input_ids)

572
            input_lengths.extend(batch.input_lengths)
573
574
            prefix_offsets.extend(batch.prefix_offsets)
            read_offsets.extend(batch.read_offsets)
575

576
            next_token_chooser_parameters.extend([r.parameters for r in batch.requests])
577
578
            stopping_criterias.extend(batch.stopping_criterias)

Nicolas Patry's avatar
Nicolas Patry committed
579
580
            top_n_tokens.extend(batch.top_n_tokens)

581
            # Update
582
            cumulative_batch_size += len(batch)
583
            cumulative_slots += len(batch.slots)
584

585
        start_slots = torch.concat(start_slots)
586

587
        next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
588
589
590
            next_token_chooser_parameters,
            dtype=batches[0].next_token_chooser.dtype,
            device=batches[0].next_token_chooser.device,
591
592
        )

OlivierDehaene's avatar
OlivierDehaene committed
593
594
595
596
597
        speculative_ids = (
            torch.cat([b.speculative_ids for b in batches], dim=0)
            if batches[0].speculative_ids is not None
            else None
        )
Nicolas Patry's avatar
Nicolas Patry committed
598

599
600
601
        # Needed to avoid dropping blocks when the batches will go out of scope
        for b in batches:
            b.block_tables = None
602
            del b
603

604
        return cls(
605
606
            batch_id=batches[0].batch_id,
            requests=requests,
607
            requests_idx_mapping=requests_idx_mapping,
608
609
            input_ids=input_ids,
            position_ids=position_ids,
610
            cu_seqlen_prefill=None,
611
612
613
614
615
616
            start_slots=start_slots,
            slot_indices=slot_indices,
            needed_blocks_slots=None,
            block_tables=block_tables,
            block_tables_tensor=block_tables_tensor,
            slots=slots,
617
            max_seqlen=max_seqlen,
618
619
620
            prefill_head_indices=None,
            prefill_next_token_indices=None,
            prefill_cu_outlens=None,
621
            input_lengths=input_lengths,
622
            input_lengths_tensor=input_lengths_tensor,
623
624
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
625
626
            all_input_ids=all_input_ids,
            all_input_ids_tensor=all_input_ids_tensor,
627
            next_token_chooser=next_token_chooser,
628
            stopping_criterias=stopping_criterias,
Nicolas Patry's avatar
Nicolas Patry committed
629
630
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
631
632
            blocks=blocks,
            max_blocks=max_blocks,
OlivierDehaene's avatar
OlivierDehaene committed
633
            speculative_ids=speculative_ids,
634
635
        )

636
637
638
    def __del__(self):
        if self.block_tables is not None and self.block_tables:
            # Free blocks
639
640
641
            get_cache_manager().free(
                list(itertools.chain.from_iterable(self.block_tables))
            )
642

643
644
645
646
647
648
649
    def __len__(self):
        return len(self.requests)


class FlashCausalLM(Model):
    def __init__(
        self,
650
651
652
653
654
655
656
657
658
        model: torch.nn.Module,
        tokenizer: PreTrainedTokenizerBase,
        num_layers: int,
        num_kv_heads: int,
        head_size: int,
        dtype: torch.dtype,
        device: torch.device,
        rank: int = 0,
        world_size: int = 1,
659
        sliding_window: Optional[int] = None,
660
    ):
661
662
663
        self.num_layers = num_layers
        self.num_kv_heads = num_kv_heads
        self.head_size = head_size
664
665

        super(FlashCausalLM, self).__init__(
666
            model=model,
667
668
669
670
            tokenizer=tokenizer,
            requires_padding=False,
            dtype=dtype,
            device=device,
671
672
            rank=rank,
            world_size=world_size,
673
            sliding_window=sliding_window,
674
675
676
677
678
679
        )

    @property
    def batch_type(self) -> Type[FlashCausalLMBatch]:
        return FlashCausalLMBatch

680
    def warmup(self, batch: FlashCausalLMBatch):
681
682
        torch.cuda.empty_cache()
        try:
683
            cache_manager = set_cache_manager(
684
                batch.blocks,
685
686
687
                self.num_layers,
                self.num_kv_heads,
                self.head_size,
688
                self.sliding_window is not None,
689
690
691
692
                self.dtype,
                self.device,
            )
            _, batch = self.generate_token(batch)
OlivierDehaene's avatar
OlivierDehaene committed
693
        except torch.cuda.OutOfMemoryError as e:
694
            raise RuntimeError(
695
696
                f"Not enough memory to handle {len(batch.input_ids)} prefill tokens. "
                f"You need to decrease `--max-batch-prefill-tokens`"
697
            ) from e
698
699
700

        torch.cuda.synchronize(self.device)

701
702
        # Inspired by the original implementation in [vllm](https://github.com/vllm-project/vllm)
        # Calculate the number of blocks that can be allocated with the free memory
703
704
705
706
        dtype_size = torch.tensor([], dtype=self.dtype).element_size()
        cache_block_size = BLOCK_SIZE * self.num_kv_heads * self.head_size
        total_cache_size = self.num_layers * cache_block_size * 2 * dtype_size

707
708
709
710
711
712
        total_free_memory, _ = torch.cuda.mem_get_info(self.device)
        total_gpu_memory = torch.cuda.get_device_properties(self.device).total_memory

        free_memory = max(
            0, total_free_memory - (1 - MEMORY_FRACTION) * total_gpu_memory
        )
713
714

        num_blocks = (
715
            int(free_memory // total_cache_size)
716
            # Add batch.blocks as we allocated it above, so it is included in the peak memory.
717
            + cache_manager.num_blocks
718
719
        )

720
        del batch
721
        del cache_manager
722

723
        set_cache_manager(
724
725
726
727
            num_blocks,
            self.num_layers,
            self.num_kv_heads,
            self.head_size,
728
            self.sliding_window is not None,
729
730
731
732
733
            self.dtype,
            self.device,
        )

        return int(num_blocks * BLOCK_SIZE)
734

735
    def forward(self, batch: FlashCausalLMBatch) -> Tuple[torch.Tensor, torch.Tensor]:
736
        # Model Forward
Nicolas Patry's avatar
Nicolas Patry committed
737
        if batch.speculative_ids is not None:
OlivierDehaene's avatar
OlivierDehaene committed
738
739
740
741
742
743
744
745
746
            input_ids = batch.input_ids
            position_ids = batch.position_ids
            cu_seqlen_prefill = batch.cu_seqlen_prefill
            kv_cache = get_cache_manager().kv_cache
            block_tables = batch.block_tables_tensor
            slots = batch.slots[batch.slot_indices]
            input_lengths = batch.input_lengths_tensor
            max_s = batch.max_seqlen
            lm_head_indices = batch.prefill_head_indices
Nicolas Patry's avatar
Nicolas Patry committed
747
748
749

            speculative_ids = batch.speculative_ids

OlivierDehaene's avatar
OlivierDehaene committed
750
            B, speculative_length = speculative_ids.shape
Nicolas Patry's avatar
Nicolas Patry committed
751
            new_length = speculative_length + 1
OlivierDehaene's avatar
OlivierDehaene committed
752
753
754
            new_input_ids = torch.cat(
                [input_ids.unsqueeze(-1), speculative_ids], dim=1
            ).reshape(-1)
Nicolas Patry's avatar
Nicolas Patry committed
755
756
            arange = torch.arange(new_length, device=position_ids.device).unsqueeze(0)
            arange_int = arange.to(dtype=torch.int32)
OlivierDehaene's avatar
OlivierDehaene committed
757
758
759
            new_position_ids = (
                position_ids.unsqueeze(-1).expand(B, new_length) + arange
            ).view(-1)
Nicolas Patry's avatar
Nicolas Patry committed
760
            slots = (slots.unsqueeze(-1).expand(B, new_length) + arange_int).view(-1)
OlivierDehaene's avatar
OlivierDehaene committed
761
762
763
            input_lengths = (
                input_lengths.unsqueeze(-1).expand(B, new_length) + arange_int
            ).view(-1)
Nicolas Patry's avatar
Nicolas Patry committed
764
765

            # Add Copy the block tables for all members
OlivierDehaene's avatar
OlivierDehaene committed
766
767
768
769
770
771
            block_tables = (
                block_tables.unsqueeze(1)
                .expand(B, new_length, -1)
                .reshape(B * new_length, -1)
                .contiguous()
            )
Nicolas Patry's avatar
Nicolas Patry committed
772
773
774
775
776
            max_s = max_s + speculative_length

            input_ids = new_input_ids
            position_ids = new_position_ids
        else:
OlivierDehaene's avatar
OlivierDehaene committed
777
778
779
780
781
782
783
784
785
            input_ids = batch.input_ids
            position_ids = batch.position_ids
            cu_seqlen_prefill = batch.cu_seqlen_prefill
            kv_cache = get_cache_manager().kv_cache
            block_tables = batch.block_tables_tensor
            slots = batch.slots[batch.slot_indices]
            input_lengths = batch.input_lengths_tensor
            max_s = batch.max_seqlen
            lm_head_indices = batch.prefill_head_indices
Nicolas Patry's avatar
Nicolas Patry committed
786

787
        return self.model.forward(
Nicolas Patry's avatar
Nicolas Patry committed
788
789
790
791
792
793
794
795
796
            input_ids=input_ids,
            position_ids=position_ids,
            cu_seqlen_prefill=cu_seqlen_prefill,
            kv_cache=kv_cache,
            block_tables=block_tables,
            slots=slots,
            input_lengths=input_lengths,
            max_s=max_s,
            lm_head_indices=lm_head_indices,
797
798
799
800
801
802
        )

    @tracer.start_as_current_span("generate_token")
    def generate_token(
        self, batch: FlashCausalLMBatch
    ) -> Tuple[List[Generation], Optional[FlashCausalLMBatch]]:
803
        prefill = batch.cu_seqlen_prefill is not None
804
        prefill_logprobs = batch.prefill_next_token_indices is not None
805

806
807
        if batch.needed_blocks_slots:
            # Allocate blocks to this batch
808
809
810
811
812
813
814
815
816
817
            block_tables, block_tables_tensor, slots = get_cache_manager().allocate(
                batch.needed_blocks_slots,
                batch.blocks,
                batch.max_blocks,
                batch.input_ids.device,
            )
            batch.needed_blocks_slots = None
            batch.block_tables = block_tables
            batch.block_tables_tensor = block_tables_tensor
            batch.slots = slots
818

819
        try:
820
            out = self.forward(batch)
821
822
823
        except Exception as e:
            del batch
            raise e
824

Nicolas Patry's avatar
Nicolas Patry committed
825
826
827
828
829
        if isinstance(out, tuple):
            out, speculative_logits = out
        else:
            speculative_logits = None

830
831
        if prefill:
            next_token_logits = (
832
                out[batch.prefill_next_token_indices] if prefill_logprobs else out
833
            )
Nicolas Patry's avatar
Nicolas Patry committed
834
835
            if speculative_logits is not None:
                speculative_logits = (
OlivierDehaene's avatar
OlivierDehaene committed
836
837
838
                    speculative_logits[batch.prefill_next_token_indices]
                    if prefill_logprobs
                    else speculative_logits
Nicolas Patry's avatar
Nicolas Patry committed
839
                )
840
841
842
        else:
            next_token_logits = out

OlivierDehaene's avatar
OlivierDehaene committed
843
844
845
846
847
848
849
850
851
852
853
854
        (
            next_input_ids,
            next_token_logprobs,
            logprobs,
            accepted_ids,
            speculative_ids,
        ) = batch.next_token_chooser(
            batch.all_input_ids_tensor[:, : batch.max_seqlen],
            next_token_logits,
            get_speculate(),
            batch.speculative_ids,
            speculative_logits,
855
856
        )

Nicolas Patry's avatar
Nicolas Patry committed
857
858
859
860
        batch_top_token_ids, batch_top_token_logprobs = batch_top_tokens(
            batch.top_n_tokens, batch.top_n_tokens_tensor, logprobs
        )

Nicolas Patry's avatar
Nicolas Patry committed
861
        speculative_length = 0 if speculative_ids is None else speculative_ids.shape[1]
862
        if prefill:
863
            if len(batch) > 1 and prefill_logprobs:
864
865
                # We create the prefill_tokens_indices tensor that will be used to gather prefill logprobs
                # When batch == 1, we will just use the batch.input_ids values directly
866
                prefill_tokens_indices = batch.input_ids.new_zeros(len(out))
867
868

            next_position_ids = batch.position_ids.new_empty(len(batch))
869
870
871
            batch.slot_indices = batch.slot_indices[batch.cu_seqlen_prefill[1:] - 1]
            # We do not need cu_seqlen_prefill anymore
            batch.cu_seqlen_prefill = None
872
873
874
875
        else:
            prefill_logprobs = None
            next_position_ids = batch.position_ids

876
877
878
879
880
        # Cumulative length
        cumulative_length = 0

        # Results
        generations: List[Generation] = []
881
        stopped = True
882
883

        # Zipped iterator
OlivierDehaene's avatar
OlivierDehaene committed
884
        iterator = zip(batch.input_lengths, batch.all_input_ids, accepted_ids)
885

886
887
888
889
        # We do two for loops as the first one can run completely asynchronously from the GPU while for the second
        # one, we need to first do a GPU <-> CPU sync
        # It is faster if we delay this sync for the maximum amount of time

890
        # For each member of the batch
Nicolas Patry's avatar
Nicolas Patry committed
891
        index = 0
OlivierDehaene's avatar
OlivierDehaene committed
892
        for i, (input_length, all_input_ids, n_accepted_ids) in enumerate(iterator):
893
            # Indexing metadata
894
895
896
            start_index = cumulative_length
            end_index = cumulative_length + input_length

897
            if prefill:
898
899
900
901
902
                # Indexing metadata
                out_start_index = batch.prefill_cu_outlens[i]
                out_end_index = batch.prefill_cu_outlens[i + 1]
                out_length = out_end_index - out_start_index

903
904
905
906
907
908
                # Initialize position_ids
                # In decode, we do not need this as we can just increment position ids
                next_position_ids[i] = batch.position_ids[end_index - 1]

                # Used to gather prefill logprobs
                # Copy batch.input_ids to prefill_token_indices
909
910
911
912
913
914
915
916
917
918
                if prefill_logprobs:
                    if len(batch) > 1:
                        prefill_tokens_indices[
                            out_start_index : out_end_index - 1
                        ] = batch.input_ids[start_index + 1 : start_index + out_length]
                    else:
                        # Set prefill_tokens_indices to the correct slice
                        prefill_tokens_indices = batch.input_ids[
                            start_index + 1 : start_index + out_length
                        ]
919

Nicolas Patry's avatar
Nicolas Patry committed
920
921
922
            for j in range(n_accepted_ids):
                batch.all_input_ids_tensor[i, input_length + j] = next_input_ids[index]
                index += 1
923
924
925

            cumulative_length += input_length

Nicolas Patry's avatar
Nicolas Patry committed
926
927
928
929
930
        batch.input_ids = next_input_ids[accepted_ids.cumsum(dim=-1) - 1]
        batch.speculative_ids = speculative_ids
        batch.position_ids = next_position_ids + accepted_ids
        batch.input_lengths_tensor += accepted_ids
        batch.slot_indices += accepted_ids
931

932
        if prefill and prefill_logprobs:
933
934
935
936
937
938
939
940
941
942
            # Get prefill logprobs
            prefill_logprobs_tensor = torch.log_softmax(out, -1)
            prefill_logprobs = torch.gather(
                prefill_logprobs_tensor, 1, prefill_tokens_indices.view(-1, 1)
            )
            # GPU <-> CPU sync
            prefill_logprobs = prefill_logprobs.view(-1).tolist()

        # GPU <-> CPU sync
        next_token_logprobs = next_token_logprobs.tolist()
Nicolas Patry's avatar
Nicolas Patry committed
943
        next_token_ids = next_input_ids.tolist()
944
945
946
947
948

        # Zipped iterator
        iterator = zip(
            batch.requests,
            batch.input_lengths,
949
950
            batch.prefix_offsets,
            batch.read_offsets,
951
952
            batch.stopping_criterias,
            batch.all_input_ids,
953
954
            batch.next_token_chooser.do_sample,
            batch.next_token_chooser.seeds,
Nicolas Patry's avatar
Nicolas Patry committed
955
            batch.top_n_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
956
            accepted_ids,
Nicolas Patry's avatar
Nicolas Patry committed
957
958
            batch_top_token_ids,
            batch_top_token_logprobs,
959
960
961
        )

        # For each member of the batch
Nicolas Patry's avatar
Nicolas Patry committed
962
        index = 0
963
964
965
        for i, (
            request,
            input_length,
966
967
            prefix_offset,
            read_offset,
968
969
            stopping_criteria,
            all_input_ids,
970
971
            do_sample,
            seed,
Nicolas Patry's avatar
Nicolas Patry committed
972
            top_n_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
973
            n_accepted_ids,
Nicolas Patry's avatar
Nicolas Patry committed
974
975
            top_token_ids,
            top_token_logprobs,
976
        ) in enumerate(iterator):
977
            # Append next token to all tokens
Nicolas Patry's avatar
Nicolas Patry committed
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
            next_token_texts = []
            left = 0
            before = stopping_criteria.current_tokens

            current_stopped = False
            for j in range(index, index + n_accepted_ids):
                # Generated token
                next_token_id = next_token_ids[j]
                all_input_ids.append(next_token_id)
                next_token_text, prefix_offset, read_offset = self.decode_token(
                    all_input_ids,
                    prefix_offset,
                    read_offset,
                )
                next_token_texts.append(next_token_text)
993

Nicolas Patry's avatar
Nicolas Patry committed
994
995
996
997
                stop, reason = stopping_criteria(
                    next_token_id,
                    next_token_text,
                )
998

Nicolas Patry's avatar
Nicolas Patry committed
999
1000
1001
1002
1003
1004
1005
                if stop:
                    left = index + n_accepted_ids - j - 1
                    current_stopped = True
                    break
                else:
                    current_stopped = False
            stopped = stopped and current_stopped
1006

OlivierDehaene's avatar
OlivierDehaene committed
1007
1008
1009
1010
            _next_token_ids = next_token_ids[index : index + n_accepted_ids - left]
            _next_token_logprobs = next_token_logprobs[
                index : index + n_accepted_ids - left
            ]
Nicolas Patry's avatar
Nicolas Patry committed
1011
            index += n_accepted_ids
1012

1013
1014
1015
1016
1017
            # Shard generations
            # All generations will be appended in the rust sharded client
            if i % self.world_size == self.rank:
                if stop:
                    # Decode generated tokens
1018
1019
                    output_text, _, _ = self.decode_token(
                        all_input_ids,
OlivierDehaene's avatar
OlivierDehaene committed
1020
1021
1022
1023
1024
1025
                        prefix_offset=len(all_input_ids)
                        - stopping_criteria.current_tokens
                        - 1,
                        read_offset=len(all_input_ids)
                        - stopping_criteria.current_tokens,
                        skip_special_tokens=True,
1026
1027
                    )
                    generated_text = GeneratedText(
1028
1029
1030
1031
                        output_text,
                        stopping_criteria.current_tokens,
                        reason,
                        seed if do_sample else None,
1032
1033
1034
1035
1036
                    )
                else:
                    generated_text = None

                # Prefill
1037
1038
1039
1040
                if prefill and request.prefill_logprobs:
                    out_start_index = batch.prefill_cu_outlens[i]
                    out_end_index = batch.prefill_cu_outlens[i + 1]

1041
1042
                    # Remove generated token to only have prefill and add nan for first prompt token
                    request_prefill_logprobs = [float("nan")] + prefill_logprobs[
1043
                        out_start_index : out_end_index - 1
1044
1045
1046
1047
1048
1049
1050
                    ]
                    prefill_token_ids = all_input_ids[:-1]
                    prefill_texts = self.tokenizer.batch_decode(
                        prefill_token_ids,
                        clean_up_tokenization_spaces=False,
                        skip_special_tokens=False,
                    )
Nicolas Patry's avatar
Nicolas Patry committed
1051
1052

                    prefill_tokens = Tokens(
OlivierDehaene's avatar
OlivierDehaene committed
1053
1054
1055
1056
                        prefill_token_ids,
                        request_prefill_logprobs,
                        prefill_texts,
                        is_special=[],
1057
1058
1059
1060
                    )
                else:
                    prefill_tokens = None

Nicolas Patry's avatar
Nicolas Patry committed
1061
1062
1063
1064
1065
1066
1067
1068
1069
                if top_n_tokens > 0:
                    toptoken_texts = self.tokenizer.batch_decode(
                        top_token_ids,
                        clean_up_tokenization_spaces=False,
                        skip_special_tokens=False,
                    )
                    special_toptokens = [
                        token_id in self.all_special_ids for token_id in top_token_ids
                    ]
Nicolas Patry's avatar
Nicolas Patry committed
1070
                    top_tokens = Tokens(
Nicolas Patry's avatar
Nicolas Patry committed
1071
1072
1073
1074
1075
1076
1077
1078
                        top_token_ids,
                        top_token_logprobs,
                        toptoken_texts,
                        special_toptokens,
                    )
                else:
                    top_tokens = None

1079
1080
1081
                generation = Generation(
                    request.id,
                    prefill_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
1082
1083
1084
1085
1086
1087
                    Tokens(
                        _next_token_ids,
                        _next_token_logprobs,
                        next_token_texts,
                        [nid in self.all_special_ids for nid in _next_token_ids],
                    ),
1088
                    generated_text,
Nicolas Patry's avatar
Nicolas Patry committed
1089
                    top_tokens,
1090
1091
                )

1092
                generations.append(generation)
1093

1094
            # Update values
Nicolas Patry's avatar
Nicolas Patry committed
1095
1096
1097
            batch.input_lengths[i] = input_length + n_accepted_ids.item()
            if batch.input_lengths[i] > batch.max_seqlen:
                batch.max_seqlen = batch.input_lengths[i]
1098
1099
            batch.prefix_offsets[i] = prefix_offset
            batch.read_offsets[i] = read_offset
1100
1101
            batch.all_input_ids[i] = all_input_ids

1102
1103
1104
1105
1106
        if stopped:
            del batch
            # No need to return a batch if we know that all requests stopped
            return generations, None

1107
1108
1109
        batch.prefill_cu_outlens = None
        batch.prefill_head_indices = None
        batch.prefill_next_token_indices = None
1110

1111
        return generations, batch