server.py 9.76 KB
Newer Older
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
1
import asyncio
Olivier Dehaene's avatar
Olivier Dehaene committed
2
import os
3
import torch
4
import time
5
import signal
Olivier Dehaene's avatar
Olivier Dehaene committed
6

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
7
from grpc import aio
8
from loguru import logger
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
9
10
11

from grpc_reflection.v1alpha import reflection
from pathlib import Path
12
from typing import List, Optional
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
13

14
15
from text_generation_server.cache import Cache
from text_generation_server.interceptor import ExceptionInterceptor
16
17
from text_generation_server.models import Model, get_model_with_lora_adapters
from text_generation_server.utils.adapter import AdapterInfo
18
19
20
21
22
23
24

try:
    from text_generation_server.models.pali_gemma import PaliGemmaBatch
    from text_generation_server.models.vlm_causal_lm import (
        VlmCausalLMBatch,
    )
    from text_generation_server.models.idefics_causal_lm import IdeficsCausalLMBatch
Nicolas Patry's avatar
Nicolas Patry committed
25
    from text_generation_server.models.mllama_causal_lm import MllamaCausalLMBatch
26

Nicolas Patry's avatar
Nicolas Patry committed
27
28
29
30
31
32
    VLM_BATCH_TYPES = {
        PaliGemmaBatch,
        VlmCausalLMBatch,
        IdeficsCausalLMBatch,
        MllamaCausalLMBatch,
    }
33
34
35
36
except (ImportError, NotImplementedError):
    # These imports can fail on CPU/Non flash.
    VLM_BATCH_TYPES = set()

37
38
from text_generation_server.pb import generate_pb2_grpc, generate_pb2
from text_generation_server.tracing import UDSOpenTelemetryAioServerInterceptor
drbh's avatar
drbh committed
39
from text_generation_server.models.globals import set_adapter_to_index
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
40

OlivierDehaene's avatar
OlivierDehaene committed
41

42
43
44
45
46
47
48
49
50
51
52
53
class SignalHandler:
    KEEP_PROCESSING = True

    def __init__(self):
        signal.signal(signal.SIGINT, self.exit_gracefully)
        signal.signal(signal.SIGTERM, self.exit_gracefully)

    def exit_gracefully(self, signum, frame):
        print(f"Exiting gracefully: Signal {signum}")
        self.KEEP_PROCESSING = False


Olivier Dehaene's avatar
Olivier Dehaene committed
54
class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
55
56
57
58
59
60
    def __init__(
        self,
        model: Model,
        cache: Cache,
        server_urls: List[str],
    ):
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
61
62
        self.cache = cache
        self.model = model
Nicolas Patry's avatar
Nicolas Patry committed
63
64
        # Quantize is resolved during model loading
        self.quantize = model.quantize
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
65
        self.server_urls = server_urls
66
67
68
69
        # For some reason, inference_mode does not work well with GLOO which we use on CPU
        if model.device.type == "cuda":
            # Force inference mode for the lifetime of TextGenerationService
            self._inference_mode_raii_guard = torch._C._InferenceMode(True)
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
70

71
72
73
    async def Info(self, request, context):
        return self.model.info

74
75
76
77
78
    async def Health(self, request, context):
        if self.model.device.type == "cuda":
            torch.zeros((2, 2)).cuda()
        return generate_pb2.HealthResponse()

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
79
80
81
82
    async def ServiceDiscovery(self, request, context):
        return generate_pb2.ServiceDiscoveryResponse(urls=self.server_urls)

    async def ClearCache(self, request, context):
83
84
85
86
        if request.HasField("id"):
            self.cache.delete(request.id)
        else:
            self.cache.clear()
Olivier Dehaene's avatar
Olivier Dehaene committed
87
        return generate_pb2.ClearCacheResponse()
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
88

89
90
91
92
    async def FilterBatch(self, request, context):
        batch = self.cache.pop(request.batch_id)
        if batch is None:
            raise ValueError(f"Batch ID {request.batch_id} not found in cache.")
93
        filtered_batch = batch.filter(request.request_ids)
94
95
96
97
        self.cache.set(filtered_batch)

        return generate_pb2.FilterBatchResponse(batch=filtered_batch.to_pb())

98
    async def Warmup(self, request, context):
99
        if self.quantize in {"exl2", "gptq"}:
100
101
102
103
            try:
                # When using GPTQ, Exllama kernels need some global kernels
                # For which we have the finale shapes only after the model has loaded
                # This will allocate those buffers.
Nicolas Patry's avatar
Nicolas Patry committed
104
                from text_generation_server.layers.gptq import (
105
106
107
108
109
110
111
112
113
                    create_exllama_buffers,
                    set_device,
                )

                set_device(self.model.device)
                create_exllama_buffers(request.max_prefill_tokens)
            except ImportError:
                pass

114
115
116
        if (
            self.model.batch_type in VLM_BATCH_TYPES
        ):  # Hack, i would rather use kwargs in the `from_pb` call
117
            batch = self.model.batch_type.from_pb_processor(
OlivierDehaene's avatar
OlivierDehaene committed
118
119
120
                request.batch,
                self.model.tokenizer,
                self.model.processor,
121
                self.model.model.config,
OlivierDehaene's avatar
OlivierDehaene committed
122
123
                self.model.dtype,
                self.model.device,
124
125
126
127
128
            )
        else:
            batch = self.model.batch_type.from_pb(
                request.batch, self.model.tokenizer, self.model.dtype, self.model.device
            )
129
        max_supported_total_tokens = self.model.warmup(batch)
130

131
132
133
        return generate_pb2.WarmupResponse(
            max_supported_total_tokens=max_supported_total_tokens
        )
134

135
    async def Prefill(self, request, context):
136
        start = time.time_ns()
137
138
139
        if (
            self.model.batch_type in VLM_BATCH_TYPES
        ):  # Hack, i would rather use kwargs in the `from_pb` call
140
            batch = self.model.batch_type.from_pb_processor(
OlivierDehaene's avatar
OlivierDehaene committed
141
142
143
                request.batch,
                self.model.tokenizer,
                self.model.processor,
144
                self.model.model.config,
OlivierDehaene's avatar
OlivierDehaene committed
145
146
                self.model.dtype,
                self.model.device,
147
148
149
150
151
            )
        else:
            batch = self.model.batch_type.from_pb(
                request.batch, self.model.tokenizer, self.model.dtype, self.model.device
            )
Olivier Dehaene's avatar
Olivier Dehaene committed
152

153
        generations, next_batch, timings = self.model.generate_token(batch)
Olivier Dehaene's avatar
Olivier Dehaene committed
154
155
        self.cache.set(next_batch)

156
157
        return generate_pb2.PrefillResponse(
            generations=[generation.to_pb() for generation in generations],
Olivier Dehaene's avatar
Olivier Dehaene committed
158
            batch=next_batch.to_pb() if next_batch else None,
159
160
161
            forward_ns=timings[0],
            decode_ns=timings[1],
            total_ns=time.time_ns() - start,
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
162
163
        )

164
    async def Decode(self, request, context):
165
        start = time.time_ns()
Olivier Dehaene's avatar
Olivier Dehaene committed
166
167
168
169
170
171
172
173
        if len(request.batches) == 0:
            raise ValueError("Must provide at least one batch")

        batches = []
        for batch_pb in request.batches:
            batch = self.cache.pop(batch_pb.id)
            if batch is None:
                raise ValueError(f"Batch ID {batch_pb.id} not found in cache.")
174
            batches.append(batch)
175
176
177

        if len(batches) == 0:
            raise ValueError("All batches are empty")
Olivier Dehaene's avatar
Olivier Dehaene committed
178
179

        if len(batches) > 1:
180
            start_concat = time.time_ns()
181
            batch = self.model.batch_type.concatenate(batches)
182
            concat_ns = time.time_ns() - start_concat
Olivier Dehaene's avatar
Olivier Dehaene committed
183
184
        else:
            batch = batches[0]
185
            concat_ns = None
Olivier Dehaene's avatar
Olivier Dehaene committed
186

187
        generations, next_batch, timings = self.model.generate_token(batch)
Olivier Dehaene's avatar
Olivier Dehaene committed
188
189
        self.cache.set(next_batch)

190
191
        return generate_pb2.DecodeResponse(
            generations=[generation.to_pb() for generation in generations],
Olivier Dehaene's avatar
Olivier Dehaene committed
192
            batch=next_batch.to_pb() if next_batch else None,
193
194
195
196
            concat_ns=concat_ns,
            forward_ns=timings[0],
            decode_ns=timings[1],
            total_ns=time.time_ns() - start,
Olivier Dehaene's avatar
Olivier Dehaene committed
197
198
        )

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
199

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
200
def serve(
201
    model_id: str,
202
    lora_adapters: Optional[List[AdapterInfo]],
203
204
205
    revision: Optional[str],
    sharded: bool,
    quantize: Optional[str],
Nicolas Patry's avatar
Nicolas Patry committed
206
    speculate: Optional[int],
207
    dtype: Optional[str],
208
    kv_cache_dtype: Optional[str],
209
210
    trust_remote_code: bool,
    uds_path: Path,
211
    max_input_tokens: int,
212
213
):
    async def serve_inner(
214
        model_id: str,
215
        lora_adapters: Optional[List[AdapterInfo]],
216
217
218
        revision: Optional[str],
        sharded: bool = False,
        quantize: Optional[str] = None,
Nicolas Patry's avatar
Nicolas Patry committed
219
        speculate: Optional[int] = None,
220
        dtype: Optional[str] = None,
221
        kv_cache_dtype: Optional[str] = None,
222
        trust_remote_code: bool = False,
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
223
    ):
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
224
        unix_socket_template = "unix://{}-{}"
drbh's avatar
drbh committed
225
        adapter_to_index = {}
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
226
227
        if sharded:
            server_urls = [
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
228
                unix_socket_template.format(uds_path, rank)
229
                for rank in range(int(os.environ["WORLD_SIZE"]))
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
230
            ]
231
            local_url = server_urls[int(os.environ["RANK"])]
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
232
        else:
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
233
            local_url = unix_socket_template.format(uds_path, 0)
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
234
235
            server_urls = [local_url]

236
        try:
237
            model = get_model_with_lora_adapters(
OlivierDehaene's avatar
OlivierDehaene committed
238
                model_id,
239
                lora_adapters,
OlivierDehaene's avatar
OlivierDehaene committed
240
241
242
243
244
                revision,
                sharded,
                quantize,
                speculate,
                dtype,
245
                kv_cache_dtype,
OlivierDehaene's avatar
OlivierDehaene committed
246
                trust_remote_code,
247
                max_input_tokens,
248
                adapter_to_index,
249
            )
drbh's avatar
drbh committed
250

251
252
253
        except Exception:
            logger.exception("Error when initializing model")
            raise
254

drbh's avatar
drbh committed
255
        set_adapter_to_index(adapter_to_index)
256
257
258
259
        server = aio.server(
            interceptors=[
                ExceptionInterceptor(),
                UDSOpenTelemetryAioServerInterceptor(),
260
261
262
263
264
            ],
            options=[
                # Set the maximum possible message length: i32::MAX
                ("grpc.max_receive_message_length", (1 << 31) - 1)
            ],
265
        )
Olivier Dehaene's avatar
Olivier Dehaene committed
266
        generate_pb2_grpc.add_TextGenerationServiceServicer_to_server(
Nicolas Patry's avatar
Nicolas Patry committed
267
            TextGenerationService(model, Cache(), server_urls), server
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
268
269
        )
        SERVICE_NAMES = (
Olivier Dehaene's avatar
Olivier Dehaene committed
270
            generate_pb2.DESCRIPTOR.services_by_name["TextGenerationService"].full_name,
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
271
272
273
274
            reflection.SERVICE_NAME,
        )
        reflection.enable_server_reflection(SERVICE_NAMES, server)
        server.add_insecure_port(local_url)
275

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
276
        await server.start()
277

278
        logger.info("Server started at {}".format(local_url))
Nicolas Patry's avatar
Nicolas Patry committed
279
        signal_handler = SignalHandler()
280
281
        while signal_handler.KEEP_PROCESSING:
            await asyncio.sleep(0.5)
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
282

283
    asyncio.run(
OlivierDehaene's avatar
OlivierDehaene committed
284
        serve_inner(
drbh's avatar
drbh committed
285
            model_id,
286
            lora_adapters,
drbh's avatar
drbh committed
287
288
289
290
291
            revision,
            sharded,
            quantize,
            speculate,
            dtype,
292
            kv_cache_dtype,
drbh's avatar
drbh committed
293
            trust_remote_code,
OlivierDehaene's avatar
OlivierDehaene committed
294
        )
295
    )