server.py 9.47 KB
Newer Older
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
1
import asyncio
Olivier Dehaene's avatar
Olivier Dehaene committed
2
import os
3
import torch
4
import time
5
import signal
Olivier Dehaene's avatar
Olivier Dehaene committed
6

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
7
from grpc import aio
8
from loguru import logger
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
9
10
11

from grpc_reflection.v1alpha import reflection
from pathlib import Path
12
from typing import List, Optional
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
13

14
15
from text_generation_server.cache import Cache
from text_generation_server.interceptor import ExceptionInterceptor
16
17
from text_generation_server.models import Model, get_model_with_lora_adapters
from text_generation_server.utils.adapter import AdapterInfo
18
19
20
21
22
23
24
25
26
27
28
29
30

try:
    from text_generation_server.models.pali_gemma import PaliGemmaBatch
    from text_generation_server.models.vlm_causal_lm import (
        VlmCausalLMBatch,
    )
    from text_generation_server.models.idefics_causal_lm import IdeficsCausalLMBatch

    VLM_BATCH_TYPES = {PaliGemmaBatch, VlmCausalLMBatch, IdeficsCausalLMBatch}
except (ImportError, NotImplementedError):
    # These imports can fail on CPU/Non flash.
    VLM_BATCH_TYPES = set()

31
32
from text_generation_server.pb import generate_pb2_grpc, generate_pb2
from text_generation_server.tracing import UDSOpenTelemetryAioServerInterceptor
drbh's avatar
drbh committed
33
from text_generation_server.models.globals import set_adapter_to_index
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
34

OlivierDehaene's avatar
OlivierDehaene committed
35

36
37
38
39
40
41
42
43
44
45
46
47
class SignalHandler:
    KEEP_PROCESSING = True

    def __init__(self):
        signal.signal(signal.SIGINT, self.exit_gracefully)
        signal.signal(signal.SIGTERM, self.exit_gracefully)

    def exit_gracefully(self, signum, frame):
        print(f"Exiting gracefully: Signal {signum}")
        self.KEEP_PROCESSING = False


Olivier Dehaene's avatar
Olivier Dehaene committed
48
class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
49
50
51
52
53
54
55
    def __init__(
        self,
        model: Model,
        cache: Cache,
        quantize: Optional[str],
        server_urls: List[str],
    ):
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
56
57
        self.cache = cache
        self.model = model
58
        self.quantize = quantize
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
59
        self.server_urls = server_urls
60
61
62
63
        # For some reason, inference_mode does not work well with GLOO which we use on CPU
        if model.device.type == "cuda":
            # Force inference mode for the lifetime of TextGenerationService
            self._inference_mode_raii_guard = torch._C._InferenceMode(True)
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
64

65
66
67
    async def Info(self, request, context):
        return self.model.info

68
69
70
71
72
    async def Health(self, request, context):
        if self.model.device.type == "cuda":
            torch.zeros((2, 2)).cuda()
        return generate_pb2.HealthResponse()

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
73
74
75
76
    async def ServiceDiscovery(self, request, context):
        return generate_pb2.ServiceDiscoveryResponse(urls=self.server_urls)

    async def ClearCache(self, request, context):
77
78
79
80
        if request.HasField("id"):
            self.cache.delete(request.id)
        else:
            self.cache.clear()
Olivier Dehaene's avatar
Olivier Dehaene committed
81
        return generate_pb2.ClearCacheResponse()
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
82

83
84
85
86
    async def FilterBatch(self, request, context):
        batch = self.cache.pop(request.batch_id)
        if batch is None:
            raise ValueError(f"Batch ID {request.batch_id} not found in cache.")
87
        filtered_batch = batch.filter(request.request_ids)
88
89
90
91
        self.cache.set(filtered_batch)

        return generate_pb2.FilterBatchResponse(batch=filtered_batch.to_pb())

92
    async def Warmup(self, request, context):
93
        if self.quantize in {"exl2", "gptq"}:
94
95
96
97
            try:
                # When using GPTQ, Exllama kernels need some global kernels
                # For which we have the finale shapes only after the model has loaded
                # This will allocate those buffers.
Nicolas Patry's avatar
Nicolas Patry committed
98
                from text_generation_server.layers.gptq import (
99
100
101
102
103
104
105
106
107
                    create_exllama_buffers,
                    set_device,
                )

                set_device(self.model.device)
                create_exllama_buffers(request.max_prefill_tokens)
            except ImportError:
                pass

108
109
110
        if (
            self.model.batch_type in VLM_BATCH_TYPES
        ):  # Hack, i would rather use kwargs in the `from_pb` call
111
            batch = self.model.batch_type.from_pb_processor(
OlivierDehaene's avatar
OlivierDehaene committed
112
113
114
                request.batch,
                self.model.tokenizer,
                self.model.processor,
115
                self.model.model.config,
OlivierDehaene's avatar
OlivierDehaene committed
116
117
                self.model.dtype,
                self.model.device,
118
119
120
121
122
            )
        else:
            batch = self.model.batch_type.from_pb(
                request.batch, self.model.tokenizer, self.model.dtype, self.model.device
            )
123
        max_supported_total_tokens = self.model.warmup(batch)
124

125
126
127
        return generate_pb2.WarmupResponse(
            max_supported_total_tokens=max_supported_total_tokens
        )
128

129
    async def Prefill(self, request, context):
130
        start = time.time_ns()
131
132
133
        if (
            self.model.batch_type in VLM_BATCH_TYPES
        ):  # Hack, i would rather use kwargs in the `from_pb` call
134
            batch = self.model.batch_type.from_pb_processor(
OlivierDehaene's avatar
OlivierDehaene committed
135
136
137
                request.batch,
                self.model.tokenizer,
                self.model.processor,
138
                self.model.model.config,
OlivierDehaene's avatar
OlivierDehaene committed
139
140
                self.model.dtype,
                self.model.device,
141
142
143
144
145
            )
        else:
            batch = self.model.batch_type.from_pb(
                request.batch, self.model.tokenizer, self.model.dtype, self.model.device
            )
Olivier Dehaene's avatar
Olivier Dehaene committed
146

147
        generations, next_batch, timings = self.model.generate_token(batch)
Olivier Dehaene's avatar
Olivier Dehaene committed
148
149
        self.cache.set(next_batch)

150
151
        return generate_pb2.PrefillResponse(
            generations=[generation.to_pb() for generation in generations],
Olivier Dehaene's avatar
Olivier Dehaene committed
152
            batch=next_batch.to_pb() if next_batch else None,
153
154
155
            forward_ns=timings[0],
            decode_ns=timings[1],
            total_ns=time.time_ns() - start,
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
156
157
        )

158
    async def Decode(self, request, context):
159
        start = time.time_ns()
Olivier Dehaene's avatar
Olivier Dehaene committed
160
161
162
163
164
165
166
167
        if len(request.batches) == 0:
            raise ValueError("Must provide at least one batch")

        batches = []
        for batch_pb in request.batches:
            batch = self.cache.pop(batch_pb.id)
            if batch is None:
                raise ValueError(f"Batch ID {batch_pb.id} not found in cache.")
168
            batches.append(batch)
169
170
171

        if len(batches) == 0:
            raise ValueError("All batches are empty")
Olivier Dehaene's avatar
Olivier Dehaene committed
172
173

        if len(batches) > 1:
174
            start_concat = time.time_ns()
175
            batch = self.model.batch_type.concatenate(batches)
176
            concat_ns = time.time_ns() - start_concat
Olivier Dehaene's avatar
Olivier Dehaene committed
177
178
        else:
            batch = batches[0]
179
            concat_ns = None
Olivier Dehaene's avatar
Olivier Dehaene committed
180

181
        generations, next_batch, timings = self.model.generate_token(batch)
Olivier Dehaene's avatar
Olivier Dehaene committed
182
183
        self.cache.set(next_batch)

184
185
        return generate_pb2.DecodeResponse(
            generations=[generation.to_pb() for generation in generations],
Olivier Dehaene's avatar
Olivier Dehaene committed
186
            batch=next_batch.to_pb() if next_batch else None,
187
188
189
190
            concat_ns=concat_ns,
            forward_ns=timings[0],
            decode_ns=timings[1],
            total_ns=time.time_ns() - start,
Olivier Dehaene's avatar
Olivier Dehaene committed
191
192
        )

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
193

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
194
def serve(
195
    model_id: str,
196
    lora_adapters: Optional[List[AdapterInfo]],
197
198
199
    revision: Optional[str],
    sharded: bool,
    quantize: Optional[str],
Nicolas Patry's avatar
Nicolas Patry committed
200
    speculate: Optional[int],
201
202
203
    dtype: Optional[str],
    trust_remote_code: bool,
    uds_path: Path,
204
    max_input_tokens: int,
205
206
):
    async def serve_inner(
207
        model_id: str,
208
        lora_adapters: Optional[List[AdapterInfo]],
209
210
211
        revision: Optional[str],
        sharded: bool = False,
        quantize: Optional[str] = None,
Nicolas Patry's avatar
Nicolas Patry committed
212
        speculate: Optional[int] = None,
213
214
        dtype: Optional[str] = None,
        trust_remote_code: bool = False,
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
215
    ):
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
216
        unix_socket_template = "unix://{}-{}"
drbh's avatar
drbh committed
217
        adapter_to_index = {}
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
218
219
        if sharded:
            server_urls = [
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
220
                unix_socket_template.format(uds_path, rank)
221
                for rank in range(int(os.environ["WORLD_SIZE"]))
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
222
            ]
223
            local_url = server_urls[int(os.environ["RANK"])]
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
224
        else:
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
225
            local_url = unix_socket_template.format(uds_path, 0)
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
226
227
            server_urls = [local_url]

228
        try:
229
            model = get_model_with_lora_adapters(
OlivierDehaene's avatar
OlivierDehaene committed
230
                model_id,
231
                lora_adapters,
OlivierDehaene's avatar
OlivierDehaene committed
232
233
234
235
236
237
                revision,
                sharded,
                quantize,
                speculate,
                dtype,
                trust_remote_code,
238
                max_input_tokens,
239
                adapter_to_index,
240
            )
drbh's avatar
drbh committed
241

242
243
244
        except Exception:
            logger.exception("Error when initializing model")
            raise
245

drbh's avatar
drbh committed
246
        set_adapter_to_index(adapter_to_index)
247
248
249
250
        server = aio.server(
            interceptors=[
                ExceptionInterceptor(),
                UDSOpenTelemetryAioServerInterceptor(),
251
252
253
254
255
            ],
            options=[
                # Set the maximum possible message length: i32::MAX
                ("grpc.max_receive_message_length", (1 << 31) - 1)
            ],
256
        )
Olivier Dehaene's avatar
Olivier Dehaene committed
257
        generate_pb2_grpc.add_TextGenerationServiceServicer_to_server(
258
            TextGenerationService(model, Cache(), quantize, server_urls), server
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
259
260
        )
        SERVICE_NAMES = (
Olivier Dehaene's avatar
Olivier Dehaene committed
261
            generate_pb2.DESCRIPTOR.services_by_name["TextGenerationService"].full_name,
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
262
263
264
265
            reflection.SERVICE_NAME,
        )
        reflection.enable_server_reflection(SERVICE_NAMES, server)
        server.add_insecure_port(local_url)
266

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
267
        await server.start()
268

269
        logger.info("Server started at {}".format(local_url))
Nicolas Patry's avatar
Nicolas Patry committed
270
        signal_handler = SignalHandler()
271
272
        while signal_handler.KEEP_PROCESSING:
            await asyncio.sleep(0.5)
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
273

274
    asyncio.run(
OlivierDehaene's avatar
OlivierDehaene committed
275
        serve_inner(
drbh's avatar
drbh committed
276
            model_id,
277
            lora_adapters,
drbh's avatar
drbh committed
278
279
280
281
282
283
            revision,
            sharded,
            quantize,
            speculate,
            dtype,
            trust_remote_code,
OlivierDehaene's avatar
OlivierDehaene committed
284
        )
285
    )