server.py 4.68 KB
Newer Older
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
1
import asyncio
Olivier Dehaene's avatar
Olivier Dehaene committed
2
import os
3
import torch
Olivier Dehaene's avatar
Olivier Dehaene committed
4

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
5
from grpc import aio
6
from loguru import logger
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
7
8
9

from grpc_reflection.v1alpha import reflection
from pathlib import Path
10
from typing import List, Optional
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
11

12
13
14
15
16
from text_generation_server.cache import Cache
from text_generation_server.interceptor import ExceptionInterceptor
from text_generation_server.models import Model, get_model
from text_generation_server.pb import generate_pb2_grpc, generate_pb2
from text_generation_server.tracing import UDSOpenTelemetryAioServerInterceptor
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
17
18


Olivier Dehaene's avatar
Olivier Dehaene committed
19
class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
20
    def __init__(self, model: Model, cache: Cache, server_urls: List[str]):
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
21
22
23
        self.cache = cache
        self.model = model
        self.server_urls = server_urls
24
25
26
27
        # For some reason, inference_mode does not work well with GLOO which we use on CPU
        if model.device.type == "cuda":
            # Force inference mode for the lifetime of TextGenerationService
            self._inference_mode_raii_guard = torch._C._InferenceMode(True)
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
28
29
30
31
32

    async def ServiceDiscovery(self, request, context):
        return generate_pb2.ServiceDiscoveryResponse(urls=self.server_urls)

    async def ClearCache(self, request, context):
33
34
35
36
37
38
        if request.HasField("id"):
            self.cache.delete(request.id)
        else:
            self.cache.clear()
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
Olivier Dehaene's avatar
Olivier Dehaene committed
39
        return generate_pb2.ClearCacheResponse()
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
40

41
    async def Prefill(self, request, context):
42
43
44
        batch = self.model.batch_type.from_pb(
            request.batch, self.model.tokenizer, self.model.device
        )
Olivier Dehaene's avatar
Olivier Dehaene committed
45

46
        generations, next_batch = self.model.generate_token(batch)
Olivier Dehaene's avatar
Olivier Dehaene committed
47
48
        self.cache.set(next_batch)

49
50
        return generate_pb2.PrefillResponse(
            generations=[generation.to_pb() for generation in generations],
Olivier Dehaene's avatar
Olivier Dehaene committed
51
            batch=next_batch.to_pb() if next_batch else None,
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
52
53
        )

54
    async def Decode(self, request, context):
Olivier Dehaene's avatar
Olivier Dehaene committed
55
56
57
58
59
60
61
62
        if len(request.batches) == 0:
            raise ValueError("Must provide at least one batch")

        batches = []
        for batch_pb in request.batches:
            batch = self.cache.pop(batch_pb.id)
            if batch is None:
                raise ValueError(f"Batch ID {batch_pb.id} not found in cache.")
63
64
65
66
67
68
            batch = batch.filter(batch_pb.requests)
            if batch is not None:
                batches.append(batch)

        if len(batches) == 0:
            raise ValueError("All batches are empty")
Olivier Dehaene's avatar
Olivier Dehaene committed
69
70

        if len(batches) > 1:
71
            batch = self.model.batch_type.concatenate(batches)
Olivier Dehaene's avatar
Olivier Dehaene committed
72
73
74
        else:
            batch = batches[0]

75
        generations, next_batch = self.model.generate_token(batch)
Olivier Dehaene's avatar
Olivier Dehaene committed
76
77
        self.cache.set(next_batch)

78
79
        return generate_pb2.DecodeResponse(
            generations=[generation.to_pb() for generation in generations],
Olivier Dehaene's avatar
Olivier Dehaene committed
80
81
82
            batch=next_batch.to_pb() if next_batch else None,
        )

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
83

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
84
def serve(
85
    model_id: str,
86
    revision: Optional[str],
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
87
    sharded: bool,
88
    quantize: bool,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
89
90
    uds_path: Path,
):
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
91
    async def serve_inner(
92
        model_id: str,
93
        revision: Optional[str],
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
94
        sharded: bool = False,
95
        quantize: bool = False,
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
96
    ):
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
97
        unix_socket_template = "unix://{}-{}"
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
98
99
        if sharded:
            server_urls = [
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
100
                unix_socket_template.format(uds_path, rank)
101
                for rank in range(int(os.environ["WORLD_SIZE"]))
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
102
            ]
103
            local_url = server_urls[int(os.environ["RANK"])]
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
104
        else:
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
105
            local_url = unix_socket_template.format(uds_path, 0)
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
106
107
            server_urls = [local_url]

108
109
110
111
112
        try:
            model = get_model(model_id, revision, sharded, quantize)
        except Exception:
            logger.exception("Error when initializing model")
            raise
113

114
115
116
117
118
119
        server = aio.server(
            interceptors=[
                ExceptionInterceptor(),
                UDSOpenTelemetryAioServerInterceptor(),
            ]
        )
Olivier Dehaene's avatar
Olivier Dehaene committed
120
121
        generate_pb2_grpc.add_TextGenerationServiceServicer_to_server(
            TextGenerationService(model, Cache(), server_urls), server
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
122
123
        )
        SERVICE_NAMES = (
Olivier Dehaene's avatar
Olivier Dehaene committed
124
            generate_pb2.DESCRIPTOR.services_by_name["TextGenerationService"].full_name,
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
125
126
127
128
            reflection.SERVICE_NAME,
        )
        reflection.enable_server_reflection(SERVICE_NAMES, server)
        server.add_insecure_port(local_url)
129

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
130
        await server.start()
131

132
        logger.info("Server started at {}".format(local_url))
133

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
134
135
136
        try:
            await server.wait_for_termination()
        except KeyboardInterrupt:
137
            logger.info("Signal received. Shutting down")
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
138
            await server.stop(0)
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
139

140
    asyncio.run(serve_inner(model_id, revision, sharded, quantize))