seq2seq_lm.py 22 KB
Newer Older
1
2
3
import torch

from dataclasses import dataclass
4
from opentelemetry import trace
5
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, PreTrainedTokenizerBase
6
7
8
from typing import Optional, Tuple, List, Type

from text_generation.models import Model
9
from text_generation.models.types import GeneratedText, Batch, Generation, PrefillTokens
10
from text_generation.pb import generate_pb2
11
from text_generation.utils import NextTokenChooser, StoppingCriteria, Sampling
12

13
14
tracer = trace.get_tracer(__name__)

15
16

@dataclass
17
class Seq2SeqLMBatch(Batch):
18
19
20
    batch_id: int
    requests: List[generate_pb2.Request]

OlivierDehaene's avatar
OlivierDehaene committed
21
    # Encoder values
22
23
24
    input_ids: torch.Tensor
    attention_mask: torch.Tensor

OlivierDehaene's avatar
OlivierDehaene committed
25
    # Decoder values
26
27
28
29
    decoder_input_ids: torch.Tensor
    decoder_attention_mask: Optional[torch.Tensor]
    encoder_last_hidden_state: Optional[torch.Tensor]

OlivierDehaene's avatar
OlivierDehaene committed
30
    # Seq2SeqLM keeps track of both encoder and decoder attention keys and values
31
32
    past_key_values: Optional[List[Tuple]]

OlivierDehaene's avatar
OlivierDehaene committed
33
    # Lengths of all generations present in the batch
34
35
36
    input_lengths: List[int]
    decoder_input_lengths: List[int]

OlivierDehaene's avatar
OlivierDehaene committed
37
    # Generation helpers
38
39
40
    next_token_choosers: List[NextTokenChooser]
    stopping_criterias: List[StoppingCriteria]

OlivierDehaene's avatar
OlivierDehaene committed
41
    # Metadata used for padding
42
43
44
    size: int
    max_input_length: int
    max_decoder_input_length: int
45
    padding_right_offset: int
46

47
    def to_pb(self) -> generate_pb2.Batch:
OlivierDehaene's avatar
OlivierDehaene committed
48
        """Convert a Seq2SeqLMBatch to a text_generation.v1.Batch protobuf"""
49
50
51
52
53
54
55
56
        return generate_pb2.Batch(
            id=self.batch_id,
            requests=self.requests,
            size=self.size,
        )

    @classmethod
    def from_pb(
57
58
59
60
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        device: torch.device,
61
    ) -> "Seq2SeqLMBatch":
OlivierDehaene's avatar
OlivierDehaene committed
62
        """Convert a text_generation.v1.Batch protobuf to a Seq2SeqLMBatch"""
63
64
65
66
67
68
69
70
71
        inputs = []
        next_token_choosers = []
        stopping_criterias = []
        input_lengths = []

        decoder_input_ids = []
        decoder_input_lengths = []

        # Parse batch
72
73
        max_input_length = 0
        padding_right_offset = 0
74
75
76
        for r in pb.requests:
            inputs.append(r.inputs)
            input_lengths.append(r.input_length)
OlivierDehaene's avatar
OlivierDehaene committed
77
            # Decoder sequence only contains the bos_token
78
79
            decoder_input_ids.append(tokenizer.bos_token_id)
            decoder_input_lengths.append(1)
80
            next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
81
82
83
84
85
86
87
            stopping_criteria = StoppingCriteria.from_pb(
                r.stopping_parameters, tokenizer
            )
            stopping_criterias.append(stopping_criteria)
            max_input_length = max(max_input_length, r.input_length)
            padding_right_offset = max(
                padding_right_offset, stopping_criteria.max_new_tokens
88
89
            )

OlivierDehaene's avatar
OlivierDehaene committed
90
        # Tokenize batch
91
        tokenized_inputs = tokenizer(
92
93
94
            inputs,
            return_tensors="pt",
            padding=True,
95
            return_token_type_ids=False,
96
        ).to(device)
OlivierDehaene's avatar
OlivierDehaene committed
97
        # Convert decoder_input_ids to torch tensor of size [batch_size, 1]
98
        decoder_input_ids = torch.tensor(decoder_input_ids, device=device).unsqueeze(-1)
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

        return cls(
            batch_id=pb.id,
            requests=pb.requests,
            input_ids=tokenized_inputs["input_ids"],
            attention_mask=tokenized_inputs["attention_mask"],
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=None,
            encoder_last_hidden_state=None,
            past_key_values=None,
            input_lengths=input_lengths,
            decoder_input_lengths=decoder_input_lengths,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            size=len(pb.requests),
            max_input_length=max(input_lengths),
            max_decoder_input_length=1,
116
            padding_right_offset=padding_right_offset,
117
118
119
        )

    @classmethod
120
    @tracer.start_as_current_span("concatenate")
121
    def concatenate(cls, batches: List["Seq2SeqLMBatch"]) -> "Seq2SeqLMBatch":
OlivierDehaene's avatar
OlivierDehaene committed
122
123
        """Concatenate multiple batches together by padding internal torch tensors"""

124
        # Used for padding
125
126
127
128
129
130
131
132
133
134
135
        total_batch_size = 0
        max_input_length = 0
        max_decoder_input_length = 0
        padding_right_offset = 0
        for batch in batches:
            total_batch_size += batch.size
            max_input_length = max(max_input_length, batch.max_input_length)
            max_decoder_input_length = max(
                max_decoder_input_length, batch.max_decoder_input_length
            )
            padding_right_offset = max(padding_right_offset, batch.padding_right_offset)
136
137
138
139
140
141
142
143

        # Batch attributes
        requests = []
        input_lengths = []
        decoder_input_lengths = []
        next_token_choosers = []
        stopping_criterias = []

OlivierDehaene's avatar
OlivierDehaene committed
144
        # Batch tensors
145
146
147
148
149
150
151
152
153
        attention_mask = None
        decoder_input_ids = None
        decoder_attention_mask = None
        encoder_last_hidden_state = None
        past_key_values = []

        # Used for slicing correctly inside the tensors
        # Equivalent to a cumsum on batch sizes
        start_index = 0
OlivierDehaene's avatar
OlivierDehaene committed
154

155
        for i, batch in enumerate(batches):
OlivierDehaene's avatar
OlivierDehaene committed
156
            # Extend all list attributes
157
158
159
160
161
162
163
164
165
166
167
168
169
            requests.extend(batch.requests)
            input_lengths.extend(batch.input_lengths)
            decoder_input_lengths.extend(batch.decoder_input_lengths)
            next_token_choosers.extend(batch.next_token_choosers)
            stopping_criterias.extend(batch.stopping_criterias)

            # Slicing end index for this batch
            end_index = start_index + batch.size

            # We only concatenate batches that did at least one step
            if batch.encoder_last_hidden_state is None:
                raise ValueError("Batch encoder_last_hidden_state cannot be None")

OlivierDehaene's avatar
OlivierDehaene committed
170
            # Create padded tensor
171
            if attention_mask is None:
172
                attention_mask = batch.attention_mask.new_zeros(
173
174
                    (total_batch_size, max_input_length),
                )
OlivierDehaene's avatar
OlivierDehaene committed
175
            # Copy to correct indices
176
177
178
179
            attention_mask[
                start_index:end_index, -batch.max_input_length :
            ] = batch.attention_mask[:, -batch.max_input_length :]

OlivierDehaene's avatar
OlivierDehaene committed
180
            # Create padded tensor
181
            if decoder_input_ids is None:
182
                decoder_input_ids = batch.decoder_input_ids.new_zeros(
183
184
                    (total_batch_size, max_decoder_input_length),
                )
OlivierDehaene's avatar
OlivierDehaene committed
185
            # Copy to correct indices
186
187
188
189
            decoder_input_ids[
                start_index:end_index, -batch.max_decoder_input_length :
            ] = batch.decoder_input_ids[:, -batch.max_decoder_input_length :]

OlivierDehaene's avatar
OlivierDehaene committed
190
            # Create padded tensor
191
            if decoder_attention_mask is None:
192
193
                # As decoder_attention_mask might not exist, we use `batch.attention_mask` for device here
                decoder_attention_mask = batch.attention_mask.new_zeros(
194
                    (total_batch_size, max_decoder_input_length + padding_right_offset),
195
                )
OlivierDehaene's avatar
OlivierDehaene committed
196
197
            # If the decoder mask does not exist yet, all generations started at the same time and we never concatenated
            # this batch. All generations are of length `batch.max_decoder_input_length`.
198
            left_offset = max_decoder_input_length - batch.max_decoder_input_length
199
200
            if batch.decoder_attention_mask is None:
                decoder_attention_mask[
201
202
                    start_index:end_index,
                    left_offset:-padding_right_offset,
203
                ] = 1
OlivierDehaene's avatar
OlivierDehaene committed
204
            # If it exists, we need to index
205
            else:
206
207
208
209
                batch_left_offset = (
                    batch.decoder_attention_mask.shape[1]
                    - batch.max_decoder_input_length - batch.padding_right_offset
                )
210
                decoder_attention_mask[
211
212
213
214
215
216
                    start_index:end_index,
                    left_offset:-padding_right_offset,
                ] = batch.decoder_attention_mask[
                    :,
                    batch_left_offset : -batch.padding_right_offset,
                ]
217

OlivierDehaene's avatar
OlivierDehaene committed
218
            # Create padded tensor
219
            if encoder_last_hidden_state is None:
220
                encoder_last_hidden_state = batch.encoder_last_hidden_state.new_zeros(
221
222
223
224
225
226
227
                    (
                        total_batch_size,
                        max_input_length,
                        batch.encoder_last_hidden_state.shape[-1],
                    ),
                )

OlivierDehaene's avatar
OlivierDehaene committed
228
            # Copy to correct indices
229
            encoder_last_hidden_state[
230
231
                start_index:end_index, -batch.max_input_length :, :
            ] = batch.encoder_last_hidden_state[:, -batch.max_input_length :, :]
232

OlivierDehaene's avatar
OlivierDehaene committed
233
            # Iterate over attention layers
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
            for j, past in enumerate(batch.past_key_values):
                _, num_heads, _, head_dim = past[0].shape

                # This will run only once per layer
                if j == len(past_key_values):
                    past_key_values.append([])

                # Decoder past
                for k, t in enumerate(past[:2]):
                    padded_t_shape = (
                        total_batch_size,
                        num_heads,
                        (max_decoder_input_length - 1),
                        head_dim,
                    )

                    # Initialize tensors
                    # This will run only once per layer and per past tensor
                    if k == len(past_key_values[j]):
253
                        past_key_values[j].append(t.new_zeros(padded_t_shape))
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

                    # We slice the past keys and values to remove the padding from previous batches
                    past_key_values[j][k][
                        start_index:end_index,
                        :,
                        -(batch.max_decoder_input_length - 1) :,
                        :,
                    ] = t[:, :, -(batch.max_decoder_input_length - 1) :, :]

                # encoder past
                for k, t in enumerate(past[2:]):
                    padded_t_shape = (
                        total_batch_size,
                        num_heads,
                        max_input_length,
                        head_dim,
                    )

                    idx = k + 2

                    # Initialize tensors
                    # This will run only once per layer and per past tensor
                    if idx == len(past_key_values[j]):
277
                        past_key_values[j].append(t.new_zeros(padded_t_shape))
278
279
280
281
282
283
284
285
286
287

                    past_key_values[j][idx][
                        start_index:end_index, :, -batch.max_input_length :, :
                    ] = t[:, :, -batch.max_input_length :, :]

            start_index += batch.size

        return cls(
            batch_id=batches[0].batch_id,
            requests=requests,
288
            input_ids=None,
289
290
291
292
293
294
295
296
297
298
299
300
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            encoder_last_hidden_state=encoder_last_hidden_state,
            past_key_values=past_key_values,
            input_lengths=input_lengths,
            decoder_input_lengths=decoder_input_lengths,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            size=total_batch_size,
            max_input_length=max_input_length,
            max_decoder_input_length=max_decoder_input_length,
301
            padding_right_offset=padding_right_offset,
302
303
        )

304
305
306
    def __len__(self):
        return len(self.requests)

307
308

class Seq2SeqLM(Model):
309
    def __init__(self, model_id: str, revision: Optional[str] = None, quantize=False):
310
311
312
313
        if torch.cuda.is_available():
            device = torch.device("cuda")
            dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
        else:
314
315
316
            if quantize:
                raise ValueError("quantization is not available on CPU")

317
318
319
320
            device = torch.device("cpu")
            dtype = torch.float32

        self.model = AutoModelForSeq2SeqLM.from_pretrained(
321
            model_id,
322
            revision=revision,
323
324
            torch_dtype=dtype,
            device_map="auto" if torch.cuda.is_available() else None,
OlivierDehaene's avatar
OlivierDehaene committed
325
            load_in_8bit=quantize,
326
        ).eval()
327
        tokenizer = AutoTokenizer.from_pretrained(
328
            model_id, revision=revision, padding_side="left"
329
        )
330
331
332
333
334
335
336
337
338
339
340
        tokenizer.bos_token_id = self.model.config.decoder_start_token_id

        super(Seq2SeqLM, self).__init__(
            tokenizer=tokenizer,
            device=device,
        )

    @property
    def batch_type(self) -> Type[Seq2SeqLMBatch]:
        return Seq2SeqLMBatch

341
342
343
    def decode(self, decoder_ids: List[int]) -> str:
        return self.tokenizer.decode(decoder_ids, skip_special_tokens=True)

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
    def forward(
        self,
        input_ids,
        attention_mask,
        decoder_input_ids,
        decoder_attention_mask: Optional,
        encoder_last_hidden_state: Optional,
        past_key_values: Optional = None,
    ) -> Tuple[
        torch.Tensor,
        torch.Tensor,
        List[Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]],
    ]:
        # Model Forward
        outputs = self.model.forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
OlivierDehaene's avatar
OlivierDehaene committed
363
            encoder_outputs=encoder_last_hidden_state,
364
365
366
367
368
369
370
371
372
            past_key_values=past_key_values,
            use_cache=True,
        )
        return (
            outputs.logits,
            outputs.encoder_last_hidden_state,
            outputs.past_key_values,
        )

373
    @tracer.start_as_current_span("generate_token")
374
375
    def generate_token(
        self, batch: Seq2SeqLMBatch
376
    ) -> Tuple[List[Generation], Optional[Seq2SeqLMBatch]]:
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
        if batch.decoder_attention_mask is not None:
            # slice to the correct shape
            decoder_attention_mask = batch.decoder_attention_mask[
                :, : -batch.padding_right_offset
            ]
        else:
            decoder_attention_mask = None

        # check if first forward or not
        if batch.past_key_values is not None:
            # Only take the last token
            decoder_input_ids = batch.decoder_input_ids[:, -1].unsqueeze(-1)
        else:
            decoder_input_ids = batch.decoder_input_ids

        # Wrap `encoder_last_hidden_state` because for some reason, Transformers does a `encoder_last_hidden_state[0]`
        # internally...
        if batch.encoder_last_hidden_state is not None:
            encoder_last_hidden_state = [batch.encoder_last_hidden_state]
        else:
            encoder_last_hidden_state = batch.encoder_last_hidden_state

399
400
401
        logits, encoder_last_hidden_state, past = self.forward(
            batch.input_ids,
            batch.attention_mask,
402
403
404
            decoder_input_ids,
            decoder_attention_mask,
            encoder_last_hidden_state,
405
            batch.past_key_values,
406
407
408
409
410
        )

        # List of indices to cache
        next_batch_keep_indices = []

OlivierDehaene's avatar
OlivierDehaene committed
411
        # New values for next forward
412
413
414
415
        next_batch_input_lengths = []
        next_batch_decoder_input_ids = []
        next_batch_decoder_input_lengths = []

OlivierDehaene's avatar
OlivierDehaene committed
416
        # Metadata
417
418
419
420
421
        next_batch_size = 0
        next_batch_max_input_length = 0
        next_batch_max_decoder_input_length = 0

        # Finished requests
422
        generations: List[Generation] = []
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442

        # Zipped iterator
        iterator = zip(
            batch.requests,
            batch.input_lengths,
            batch.decoder_input_lengths,
            logits,
            batch.next_token_choosers,
            batch.stopping_criterias,
            batch.decoder_input_ids,
        )

        # For each member of the batch
        for i, (
            request,
            input_length,
            decoder_input_length,
            logits,
            next_token_chooser,
            stopping_criteria,
OlivierDehaene's avatar
OlivierDehaene committed
443
            decoder_input_ids,
444
445
        ) in enumerate(iterator):
            # Select next token
446
447
448
            next_token_id, logprobs = next_token_chooser(
                decoder_input_ids.view(1, -1), logits
            )
449
450

            # Append next token to decoder tokens
451
            decoder_input_ids = torch.cat([decoder_input_ids, next_token_id.squeeze(1)])
OlivierDehaene's avatar
OlivierDehaene committed
452
453
            new_decoder_input_length = decoder_input_length + 1

454
455
456
457
458
459
460
461
            # Generated token
            next_token_logprob = logprobs[-1, next_token_id]
            next_token_id_squeezed = next_token_id.squeeze()
            next_token_text = self.tokenizer.decode(
                next_token_id_squeezed,
                clean_up_tokenization_spaces=False,
                skip_special_tokens=False,
            )
462
463

            # Evaluate stopping criteria
464
465
            stop, reason = stopping_criteria(next_token_id, next_token_text)

466
            if stop:
OlivierDehaene's avatar
OlivierDehaene committed
467
468
                # Slice with decoder_input_length to remove padding
                # Decode all tokens
469
                output_text = self.decode(decoder_input_ids[-new_decoder_input_length:])
470
471
472
473
474
475
476

                # Get seed
                if isinstance(next_token_chooser.choice, Sampling):
                    seed = next_token_chooser.choice.seed
                else:
                    seed = None

477
478
                generated_text = GeneratedText(
                    output_text, stopping_criteria.current_tokens, reason, seed
479
480
                )
            else:
481
482
                # Keep request in the batch
                generated_text = None
483
                next_batch_keep_indices.append(i)
OlivierDehaene's avatar
OlivierDehaene committed
484
                next_batch_decoder_input_ids.append(decoder_input_ids.unsqueeze(0))
485
486
487
488
489
490
491
492
493
494
                next_batch_size += 1
                next_batch_input_lengths.append(input_length)
                next_batch_decoder_input_lengths.append(new_decoder_input_length)
                next_batch_max_input_length = max(
                    next_batch_max_input_length, input_length
                )
                next_batch_max_decoder_input_length = max(
                    next_batch_max_decoder_input_length, new_decoder_input_length
                )

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
            # Prefill
            if stopping_criteria.current_tokens == 1:
                prefill_token_ids = decoder_input_ids[-new_decoder_input_length:-1]
                prefill_texts = self.tokenizer.batch_decode(
                    prefill_token_ids,
                    clean_up_tokenization_spaces=False,
                    skip_special_tokens=False,
                )
                prefill_tokens = PrefillTokens(
                    prefill_token_ids, [float("nan")], prefill_texts
                )
            else:
                prefill_tokens = None

            generation = Generation(
                request.id,
                prefill_tokens,
                next_token_id_squeezed,
                next_token_logprob,
                next_token_text,
                generated_text,
            )

            generations.append(generation)

520
521
        # We finished all generations in the batch; there is no next batch
        if not next_batch_keep_indices:
522
            return generations, None
523
524

        next_batch_decoder_input_ids = torch.cat(next_batch_decoder_input_ids)
OlivierDehaene's avatar
OlivierDehaene committed
525
526
        # If we finished at least one generation, we need to evict the indices of the generations that finished
        # from the values of the next batch
527
        if len(next_batch_keep_indices) != len(batch):
528
            # Apply indices to decoder_attention mask, past key values and other items that need to be cached
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
            next_batch_attention_mask = batch.attention_mask[next_batch_keep_indices]
            if batch.decoder_attention_mask is not None:
                next_batch_decoder_attention_mask = batch.decoder_attention_mask[
                    next_batch_keep_indices
                ]
            else:
                next_batch_decoder_attention_mask = None

            next_batch_encoder_last_hidden_state = encoder_last_hidden_state[
                next_batch_keep_indices
            ]

            next_batch_past_key_values = [
                [t[next_batch_keep_indices] for t in layer] for layer in past
            ]
            next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
            next_batch_next_token_choosers = [
                batch.next_token_choosers[i] for i in next_batch_keep_indices
            ]
            next_batch_stopping_criterias = [
                batch.stopping_criterias[i] for i in next_batch_keep_indices
            ]
        else:
            next_batch_attention_mask = batch.attention_mask
            next_batch_decoder_attention_mask = batch.decoder_attention_mask
            next_batch_encoder_last_hidden_state = encoder_last_hidden_state
            next_batch_past_key_values = past

            next_batch_requests = batch.requests
            next_batch_next_token_choosers = batch.next_token_choosers
            next_batch_stopping_criterias = batch.stopping_criterias

561
        # Update decoder_attention_mask as we added a new token to input_ids
562
        if next_batch_decoder_attention_mask is not None:
563
            next_batch_decoder_attention_mask[:, -batch.padding_right_offset] = 1
564
565
566
567

        next_batch = Seq2SeqLMBatch(
            batch_id=batch.batch_id,
            requests=next_batch_requests,
568
            input_ids=None,
569
570
571
572
573
574
575
576
577
578
579
580
            attention_mask=next_batch_attention_mask,
            decoder_input_ids=next_batch_decoder_input_ids,
            decoder_attention_mask=next_batch_decoder_attention_mask,
            encoder_last_hidden_state=next_batch_encoder_last_hidden_state,
            past_key_values=next_batch_past_key_values,
            input_lengths=next_batch_input_lengths,
            decoder_input_lengths=next_batch_decoder_input_lengths,
            next_token_choosers=next_batch_next_token_choosers,
            stopping_criterias=next_batch_stopping_criterias,
            size=next_batch_size,
            max_input_length=next_batch_max_input_length,
            max_decoder_input_length=next_batch_max_decoder_input_length,
581
            padding_right_offset=batch.padding_right_offset - 1,
582
        )
583
        return generations, next_batch