flash_causal_lm.py 15.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
import torch
import torch.distributed

from torch.nn import functional as F

from dataclasses import dataclass
from opentelemetry import trace
from transformers import AutoTokenizer, PreTrainedTokenizerBase, PreTrainedModel
from typing import Optional, Tuple, List, Type, Union

from text_generation_server.models import Model
from text_generation_server.models.types import (
    Batch,
    PrefillTokens,
    Generation,
    GeneratedText,
)
from text_generation_server.pb import generate_pb2
from text_generation_server.utils import (
    NextTokenChooser,
    StoppingCriteria,
    Sampling,
)

tracer = trace.get_tracer(__name__)


@dataclass
class FlashCausalLMBatch(Batch):
    batch_id: int
    requests: List[generate_pb2.Request]

    # Decoder values
    input_ids: torch.Tensor
    position_ids: torch.Tensor
    # cumulative sequence lengths
    cu_seqlens: torch.Tensor
    max_seqlen: int
    past_key_values: Optional[torch.Tensor]

    # All tokens
    all_input_ids: List[List[int]]
    all_input_ids_tensor: List[torch.Tensor]

    # Lengths of all generations present in the batch
    input_lengths: List[int]

    # Generation helpers
    next_token_choosers: List[NextTokenChooser]
    stopping_criterias: List[StoppingCriteria]

    def to_pb(self) -> generate_pb2.Batch:
        return generate_pb2.Batch(
            id=self.batch_id, requests=self.requests, size=len(self)
        )

    @classmethod
    def from_pb(
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        device: torch.device,
    ) -> "CausalLMBatch":
        input_ids = []
        position_ids = []
        cu_seqlens = [0]
        max_seqlen = 0

        input_lengths = []
        all_input_ids = []
        all_input_ids_tensor = []

        next_token_choosers = []
        stopping_criterias = []

        # Cumulative length
        cumulative_length = 0

        # Parse batch
        for r in pb.requests:
            tokenized_input = tokenizer(r.inputs)["input_ids"]
            input_length = len(tokenized_input)
            max_seqlen = max(max_seqlen, input_length)
            input_lengths.append(input_length)
            all_input_ids.append(tokenized_input)

            tokenized_input = torch.tensor(tokenized_input, device=device)
            input_ids.append(tokenized_input)

            # Position ids
            position_ids.append(torch.arange(0, input_length, dtype=torch.int32))

            # Add cumulative lengths of all previous inputs
            cu_seqlens.append(cumulative_length + input_length)

            next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
            stopping_criteria = StoppingCriteria.from_pb(
                r.stopping_parameters, tokenizer
            )
            stopping_criterias.append(stopping_criteria)
            all_input_ids_tensor.append(
                F.pad(tokenized_input, (0, stopping_criteria.max_new_tokens))
            )

            # Update
            cumulative_length += input_length

        input_ids = torch.concat(input_ids)
        position_ids = torch.concat(position_ids)
        cu_seqlens = torch.tensor(cu_seqlens, dtype=torch.int32)

        return cls(
            batch_id=pb.id,
            requests=pb.requests,
            input_ids=input_ids,
            position_ids=position_ids,
            cu_seqlens=cu_seqlens,
            max_seqlen=max_seqlen,
            past_key_values=None,
            input_lengths=input_lengths,
            all_input_ids=all_input_ids,
            all_input_ids_tensor=all_input_ids_tensor,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
        )

    @classmethod
    @tracer.start_as_current_span("concatenate")
    def concatenate(cls, batches: List["FlashCausalLMBatch"]) -> "FlashCausalLMBatch":
        # Batch attributes
        requests = []
        input_lengths = []
        all_input_ids = []
        all_input_ids_tensor = []
        next_token_choosers = []
        stopping_criterias = []

        # Batch tensors
        input_ids = []
        position_ids = []
        cu_seqlens = [torch.tensor([0], dtype=torch.int32)]
        max_seqlen = 0
        past_key_values = []

        # Cumulative length
        cumulative_length = torch.tensor(0)

        for i, batch in enumerate(batches):
            requests.extend(batch.requests)
            input_lengths.extend(batch.input_lengths)
            all_input_ids.extend(batch.all_input_ids)
            all_input_ids_tensor.extend(batch.all_input_ids_tensor)
            next_token_choosers.extend(batch.next_token_choosers)
            stopping_criterias.extend(batch.stopping_criterias)

            # Add cumulative lengths of all previous inputs
            cu_seqlens.append(batch.cu_seqlens[1:] + cumulative_length)

            input_ids.append(batch.input_ids)
            position_ids.append(batch.position_ids)
            past_key_values.append(batch.past_key_values)

            max_seqlen = max(max_seqlen, batch.max_seqlen)

            # Update
            cumulative_length += batch.cu_seqlens[-1]

        input_ids = torch.concat(input_ids)
        position_ids = torch.concat(position_ids)
        # Concat on dim=1 as first dim represents the model layers
        past_key_values = torch.concat(past_key_values, dim=1)
        cu_seqlens = torch.concat(cu_seqlens)

        return FlashCausalLMBatch(
            batch_id=batches[0].batch_id,
            requests=requests,
            input_ids=input_ids,
            position_ids=position_ids,
            cu_seqlens=cu_seqlens,
            max_seqlen=max_seqlen,
            past_key_values=past_key_values,
            input_lengths=input_lengths,
            all_input_ids=all_input_ids,
            all_input_ids_tensor=all_input_ids_tensor,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
        )

    def __len__(self):
        return len(self.requests)


class FlashCausalLM(Model):
    def __init__(
        self,
        model_cls: Type[PreTrainedModel],
        model_id: str,
        revision: Optional[str] = None,
        quantize=False,
    ):
        if torch.cuda.is_available():
            device = torch.device("cuda")
            dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
        else:
            raise NotImplementedError("FlashCausalLM is only available on GPU")

        if quantize:
            raise NotImplementedError("FlashCausalLM does not support quantization")

        tokenizer = AutoTokenizer.from_pretrained(
            model_id, revision=revision, padding_side="left"
        )
        self.model = (
            model_cls.from_pretrained(
                model_id,
                revision=revision,
                torch_dtype=dtype,
            )
            .eval()
            .cuda()
        )

        super(FlashCausalLM, self).__init__(
            tokenizer=tokenizer,
            device=device,
        )

    @property
    def batch_type(self) -> Type[FlashCausalLMBatch]:
        return FlashCausalLMBatch

    def decode(self, generated_ids: Union[torch.Tensor, List[int]]) -> str:
        return self.tokenizer.decode(
            generated_ids, skip_special_tokens=True, cleanup_tokenization_spaces=False
        )

    def forward(
        self,
        input_ids: torch.Tensor,
        position_ids: torch.Tensor,
        cu_seqlens: torch.Tensor,
        max_s: int,
        past_key_values: Optional = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # Model Forward
        return self.model.forward(
            input_ids=input_ids,
            position_ids=position_ids,
            cu_seqlens=cu_seqlens,
            max_s=max_s,
            past_key_values=past_key_values,
        )

    @tracer.start_as_current_span("generate_token")
    def generate_token(
        self, batch: FlashCausalLMBatch
    ) -> Tuple[List[Generation], Optional[FlashCausalLMBatch]]:
        # Better to send to device here to avoid device issues in concatenate
        position_ids = batch.position_ids.to(self.device, non_blocking=True)
        cu_seqlens = batch.cu_seqlens.to(self.device)

        out, present = self.forward(
            batch.input_ids,
            position_ids,
            cu_seqlens,
            batch.max_seqlen,
            batch.past_key_values,
        )

        # List of indices to cache
        next_batch_keep_indices = []

        # New values for next forward
        next_batch_input_ids = []
        next_batch_position_ids = []
        next_batch_cu_seqlens = [0]
        next_batch_max_seqlen = 0
        next_batch_past_key_values = []
        next_batch_input_lengths = []
        next_batch_all_input_ids = []
        next_batch_all_input_ids_tensor = []

        # Cumulative length
        cumulative_length = 0

        # Results
        generations: List[Generation] = []

        # Zipped iterator
        iterator = zip(
            batch.requests,
            batch.input_lengths,
            batch.next_token_choosers,
            batch.stopping_criterias,
            batch.all_input_ids,
            batch.all_input_ids_tensor,
        )

        # For each member of the batch
        for i, (
            request,
            input_length,
            next_token_chooser,
            stopping_criteria,
            all_input_ids,
            all_input_ids_tensor,
        ) in enumerate(iterator):
            # Indexing metadata
            start_index = cumulative_length
            end_index = cumulative_length + input_length

            if batch.past_key_values is None:
                # Prefill mode
                # out is of shape [cumulative_sequence_lengths, vocab_size]
                logits = out[start_index:end_index]
            else:
                # Decode mode
                # out is of shape [batch_size, vocab_size]
                logits = out[i].unsqueeze(0)

            # Select next token
            next_token_id, logprobs = next_token_chooser(
                all_input_ids_tensor[None, :input_length], logits
            )
            next_token_id_squeezed = next_token_id.squeeze()
            next_token_id_item = next_token_id_squeezed.item()

            # Append next token to all tokens
            all_input_ids.append(next_token_id_item)
            all_input_ids_tensor[input_length] = next_token_id_item
            new_input_length = input_length + 1

            # Generated token
            next_token_logprob = logprobs[-1, next_token_id_item]
            next_token_text = self.decode_token(
                next_token_id_item,
            )

            # Evaluate stopping criteria
            stop, reason = stopping_criteria(
                next_token_id_item,
                next_token_text,
            )

            if stop:
                # Decode generated tokens
                output_text = self.decode(
                    all_input_ids[-stopping_criteria.current_tokens :]
                )
                # Get seed
                if isinstance(next_token_chooser.choice, Sampling):
                    seed = next_token_chooser.choice.seed
                else:
                    seed = None

                generated_text = GeneratedText(
                    output_text, stopping_criteria.current_tokens, reason, seed
                )
            else:
                # Keep request in the batch
                next_batch_keep_indices.append(i)
                generated_text = None

                # Get sequence present
                seq_present = present[:, start_index:end_index]
                # Pad it for next iter attention
                past = torch.nn.functional.pad(seq_present, (0, 0, 0, 0, 0, 0, 0, 1))
                next_batch_past_key_values.append(past)

                next_batch_input_ids.append(next_token_id)
                next_batch_position_ids.append(input_length)
                # Cumulative sum
                next_batch_cu_seqlens.append(
                    next_batch_cu_seqlens[-1] + new_input_length
                )
                next_batch_input_lengths.append(new_input_length)
                next_batch_all_input_ids.append(all_input_ids)
                next_batch_all_input_ids_tensor.append(all_input_ids_tensor)
                next_batch_max_seqlen = max(next_batch_max_seqlen, new_input_length)

            # Prefill
            if stopping_criteria.current_tokens == 1:
                # Remove generated token to only have prefill and add nan for first prompt token
                prefill_logprobs = [float("nan")] + logprobs.gather(
                    1, all_input_ids_tensor[1:input_length].unsqueeze(1)
                ).squeeze(1)[:-1].tolist()
                prefill_token_ids = all_input_ids[:-1]
                prefill_texts = self.tokenizer.batch_decode(
                    prefill_token_ids,
                    clean_up_tokenization_spaces=False,
                    skip_special_tokens=False,
                )
                prefill_tokens = PrefillTokens(
                    prefill_token_ids, prefill_logprobs, prefill_texts
                )
            else:
                prefill_tokens = None

            generation = Generation(
                request.id,
                prefill_tokens,
                next_token_id_item,
                next_token_logprob,
                next_token_text,
                next_token_id_item in self.all_special_ids,
                generated_text,
            )

            generations.append(generation)
            cumulative_length += input_length

        # We finished all generations in the batch; there is no next batch
        if not next_batch_keep_indices:
            return generations, None

        # If we finished at least one generation, we need to evict the indices of the generations that finished
        # from the values of the next batch
        if len(next_batch_keep_indices) != len(batch):
            # Apply indices to requests, token_choosers and stopping_criterias that need to be cached
            next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
            next_batch_next_token_choosers = [
                batch.next_token_choosers[i] for i in next_batch_keep_indices
            ]
            next_batch_stopping_criterias = [
                batch.stopping_criterias[i] for i in next_batch_keep_indices
            ]
        else:
            next_batch_requests = batch.requests
            next_batch_next_token_choosers = batch.next_token_choosers
            next_batch_stopping_criterias = batch.stopping_criterias

        # Create final next batch tensors
        next_batch_position_ids = torch.tensor(
            next_batch_position_ids, dtype=torch.int32
        )
        next_batch_cu_seqlens = torch.tensor(next_batch_cu_seqlens, dtype=torch.int32)
        if len(next_batch_keep_indices) > 1:
            next_batch_input_ids = torch.concat(next_batch_input_ids).squeeze(1)
            next_batch_past_key_values = torch.concat(next_batch_past_key_values, dim=1)
        else:
            next_batch_input_ids = next_batch_input_ids[0].view(1)
            next_batch_past_key_values = next_batch_past_key_values[0]

        next_batch = FlashCausalLMBatch(
            batch_id=batch.batch_id,
            requests=next_batch_requests,
            input_ids=next_batch_input_ids,
            position_ids=next_batch_position_ids,
            cu_seqlens=next_batch_cu_seqlens,
            max_seqlen=next_batch_max_seqlen,
            past_key_values=next_batch_past_key_values,
            input_lengths=next_batch_input_lengths,
            all_input_ids=next_batch_all_input_ids,
            all_input_ids_tensor=next_batch_all_input_ids_tensor,
            next_token_choosers=next_batch_next_token_choosers,
            stopping_criterias=next_batch_stopping_criterias,
        )
        return generations, next_batch