__init__.py 44.3 KB
Newer Older
1
2
3
# ruff: noqa: F821
# the above line disables the `undefined-name` rule for the model type variables

4
import torch
5
import enum
Nicolas Patry's avatar
Nicolas Patry committed
6
import os
7

8
from loguru import logger
9
from transformers.configuration_utils import PretrainedConfig
10
from transformers.models.auto import modeling_auto
Nicolas Patry's avatar
Nicolas Patry committed
11
from huggingface_hub import hf_hub_download, HfApi
12
from typing import Optional, List, Dict
13
from pathlib import Path
14

Nicolas Patry's avatar
Nicolas Patry committed
15
from text_generation_server.utils.speculate import get_speculate, set_speculate
16
from text_generation_server.models.model import Model
17
18
19
20
21
from text_generation_server.models.causal_lm import CausalLM, CausalLMBatchKeysLast
from text_generation_server.models.custom_modeling.opt_modeling import OPTForCausalLM
from text_generation_server.models.custom_modeling.mpt_modeling import (
    MPTForCausalLM,
)
22
from text_generation_server.models.bloom import BloomCausalLMBatch
23
24
25
from text_generation_server.models.custom_modeling.bloom_modeling import (
    BloomForCausalLM,
)
26
from text_generation_server.models.seq2seq_lm import Seq2SeqLM
27
28
29
30
31
32
33
34
35
36
37
from text_generation_server.models.galactica import GalacticaCausalLMBatch
from text_generation_server.models.custom_modeling.neox_modeling import (
    GPTNeoxForCausalLM,
)
from text_generation_server.models.custom_modeling.phi_modeling import (
    PhiConfig,
    PhiForCausalLM,
)
from text_generation_server.models.custom_modeling.t5_modeling import (
    T5ForConditionalGeneration,
)
38

39
40
41
42
43
44
45
46
47
48

from text_generation_server.utils.adapter import (
    AdapterParameters,
    build_layer_weight_lookup,
    load_and_merge_adapters,
    AdapterInfo,
)
from text_generation_server.adapters.lora import LoraWeights


49
from text_generation_server.utils.import_utils import SYSTEM
50
from text_generation_server.utils.log import log_master
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
# in PyTorch 1.12 and later.
torch.backends.cuda.matmul.allow_tf32 = True

# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
torch.backends.cudnn.allow_tf32 = True

# Disable gradients
torch.set_grad_enabled(False)

__all__ = [
    "Model",
    "CausalLM",
    "Seq2SeqLM",
66
    "get_model_with_lora_adapters",
67
68
]

69
FLASH_ATT_ERROR_MESSAGE = "{} requires Flash Attention enabled models."
70

71
FLASH_ATTENTION = True
72

73
try:
74
    from text_generation_server.models.flash_causal_lm import FlashCausalLM
75
    from text_generation_server.models.vlm_causal_lm import VlmCausalLM
76
77
78
79
    from text_generation_server.models.custom_modeling.flash_deepseek_v2_modeling import (
        FlashDeepseekV2ForCausalLM,
        DeepseekV2Config,
    )
80
81
    from text_generation_server.models.custom_modeling.flash_llama_modeling import (
        FlashLlamaForCausalLM,
82
    )
83
84
    from text_generation_server.models.custom_modeling.flash_cohere_modeling import (
        FlashCohereForCausalLM,
OlivierDehaene's avatar
OlivierDehaene committed
85
    )
86
87
    from text_generation_server.models.custom_modeling.flash_gemma_modeling import (
        FlashGemmaForCausalLM,
OlivierDehaene's avatar
OlivierDehaene committed
88
    )
89
90
    from text_generation_server.models.custom_modeling.flash_gemma2_modeling import (
        FlashGemma2ForCausalLM,
91
    )
92
93
94
95
96
97
98
99
100
101
    from text_generation_server.models.custom_modeling.flash_dbrx_modeling import (
        FlashDbrxForCausalLM,
        DbrxConfig,
    )
    from text_generation_server.models.custom_modeling.flash_rw_modeling import (
        RWConfig,
        FlashRWForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_neox_modeling import (
        FlashGPTNeoXForCausalLM,
Nicolas Patry's avatar
Nicolas Patry committed
102
    )
drbh's avatar
drbh committed
103
    from text_generation_server.models.pali_gemma import (
104
        PaliGemmaBatch,
drbh's avatar
drbh committed
105
    )
106
107
108
109
110
    from text_generation_server.models.custom_modeling.flash_pali_gemma_modeling import (
        PaliGemmaForConditionalGeneration,
    )
    from text_generation_server.models.custom_modeling.flash_phi_modeling import (
        FlashPhiForCausalLM,
111
    )
112
    from text_generation_server.models.idefics import IDEFICSSharded
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
    from text_generation_server.models.custom_modeling.llava_next import (
        LlavaNextForConditionalGeneration,
    )

    from text_generation_server.models.custom_modeling.flash_santacoder_modeling import (
        FlashSantacoderForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_starcoder2_modeling import (
        FlashStarcoder2ForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_qwen2_modeling import (
        Qwen2ForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_mistral_modeling import (
        FlashMistralForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_mixtral_modeling import (
        FlashMixtralForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_gpt2_modeling import (
        FlashGPT2ForCausalLM,
    )
135
136
137
    from text_generation_server.models.custom_modeling.flash_gptj_modeling import (
        FlashGPTJForCausalLM,
    )
138
139
140
    from text_generation_server.models.custom_modeling.idefics2 import (
        Idefics2ForConditionalGeneration,
    )
141
    from text_generation_server.layers.attention import SUPPORTS_WINDOWING
142
except ImportError as e:
143
    log_master(logger.warning, f"Could not import Flash Attention enabled models: {e}")
144
    SUPPORTS_WINDOWING = False
145
    FLASH_ATTENTION = False
146

147
if FLASH_ATTENTION:
148
    __all__.append(FlashCausalLM)
149
    __all__.append(IDEFICSSharded)
OlivierDehaene's avatar
OlivierDehaene committed
150

drbh's avatar
drbh committed
151
152
153
154
MAMBA_AVAILABLE = True
try:
    from text_generation_server.models.mamba import Mamba
except ImportError as e:
155
    log_master(logger.warning, f"Could not import Mamba: {e}")
drbh's avatar
drbh committed
156
157
158
159
    MAMBA_AVAILABLE = False

if MAMBA_AVAILABLE:
    __all__.append(Mamba)
OlivierDehaene's avatar
OlivierDehaene committed
160

161

162
class ModelType(enum.Enum):
163
164
165
166
167
    DEEPSEEK_V2 = {
        "type": "deepseek_v2",
        "name": "Deepseek V2",
        "url": "https://huggingface.co/deepseek-ai/DeepSeek-V2",
    }
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    IDEFICS2 = {
        "type": "idefics2",
        "name": "Idefics 2",
        "url": "https://huggingface.co/HuggingFaceM4/idefics2-8b",
        "multimodal": True,
    }
    LLAVA_NEXT = {
        "type": "llava_next",
        "name": "Llava Next (1.6)",
        "url": "https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf",
        "multimodal": True,
    }
    LLAMA = {
        "type": "llama",
        "name": "Llama",
183
        "url": "https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f",
184
185
186
187
188
189
190
191
192
193
194
    }
    PHI3 = {
        "type": "phi3",
        "name": "Phi 3",
        "url": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct",
    }
    GEMMA = {
        "type": "gemma",
        "name": "Gemma",
        "url": "https://huggingface.co/google/gemma-7b",
    }
195
196
197
198
199
    PALIGEMMA = {
        "type": "paligemma",
        "name": "PaliGemma",
        "url": "https://huggingface.co/google/paligemma-3b-pt-224",
    }
Nicolas Patry's avatar
Nicolas Patry committed
200
201
202
    GEMMA2 = {
        "type": "gemma2",
        "name": "Gemma2",
203
        "url": "https://huggingface.co/collections/google/gemma-2-release-667d6600fd5220e7b967f315",
Nicolas Patry's avatar
Nicolas Patry committed
204
    }
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    COHERE = {
        "type": "cohere",
        "name": "Cohere",
        "url": "https://huggingface.co/CohereForAI/c4ai-command-r-plus",
    }
    DBRX = {
        "type": "dbrx",
        "name": "Dbrx",
        "url": "https://huggingface.co/databricks/dbrx-instruct",
    }
    MAMBA = {
        "type": "ssm",
        "name": "Mamba",
        "url": "https://huggingface.co/state-spaces/mamba-2.8b-slimpj",
    }
    MISTRAL = {
        "type": "mistral",
        "name": "Mistral",
223
        "url": "https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407",
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    }
    MIXTRAL = {
        "type": "mixtral",
        "name": "Mixtral",
        "url": "https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1",
    }
    GPT_BIGCODE = {
        "type": "gpt_bigcode",
        "name": "Gpt Bigcode",
        "url": "https://huggingface.co/bigcode/gpt_bigcode-santacoder",
    }
    PHI = {
        "type": "phi",
        "name": "Phi",
        "url": "https://huggingface.co/microsoft/phi-1_5",
    }
    BAICHUAN = {
        "type": "baichuan",
        "name": "Baichuan",
        "url": "https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat",
    }
    FALCON = {
        "type": "falcon",
        "name": "Falcon",
        "url": "https://huggingface.co/tiiuae/falcon-7b-instruct",
    }
    STARCODER2 = {
        "type": "starcoder2",
        "name": "StarCoder 2",
        "url": "https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1",
    }
    QWEN2 = {
        "type": "qwen2",
        "name": "Qwen 2",
258
        "url": "https://huggingface.co/collections/Qwen/qwen2-6659360b33528ced941e557f",
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
    }
    OPT = {
        "type": "opt",
        "name": "Opt",
        "url": "https://huggingface.co/facebook/opt-6.7b",
    }
    T5 = {
        "type": "t5",
        "name": "T5",
        "url": "https://huggingface.co/google/flan-t5-xxl",
    }
    GALACTICA = {
        "type": "galactica",
        "name": "Galactica",
        "url": "https://huggingface.co/facebook/galactica-120b",
    }
    SANTACODER = {
        "type": "santacoder",
        "name": "SantaCoder",
        "url": "https://huggingface.co/bigcode/santacoder",
    }
    BLOOM = {
        "type": "bloom",
        "name": "Bloom",
        "url": "https://huggingface.co/bigscience/bloom-560m",
    }
    MPT = {
        "type": "mpt",
        "name": "Mpt",
        "url": "https://huggingface.co/mosaicml/mpt-7b-instruct",
    }
    GPT2 = {
        "type": "gpt2",
        "name": "Gpt2",
        "url": "https://huggingface.co/openai-community/gpt2",
    }
    GPT_NEOX = {
        "type": "gpt_neox",
        "name": "Gpt Neox",
        "url": "https://huggingface.co/EleutherAI/gpt-neox-20b",
    }
300
301
302
303
304
    GPTJ = {
        "type": "gptj",
        "name": "Gptj",
        "url": "https://huggingface.co/EleutherAI/gpt-j-6b",
    }
305
306
307
308
309
310
311
312
313
314
315
316
317
    IDEFICS = {
        "type": "idefics",
        "name": "Idefics",
        "url": "https://huggingface.co/HuggingFaceM4/idefics-9b",
        "multimodal": True,
    }


__GLOBALS = locals()
for data in ModelType:
    __GLOBALS[data.name] = data.value["type"]


318
def get_model(
319
    model_id: str,
drbh's avatar
drbh committed
320
    lora_adapter_ids: Optional[List[str]],
321
322
323
    revision: Optional[str],
    sharded: bool,
    quantize: Optional[str],
Nicolas Patry's avatar
Nicolas Patry committed
324
    speculate: Optional[int],
325
    dtype: Optional[str],
326
    trust_remote_code: bool,
327
    max_input_tokens: int,
328
) -> Model:
329
    global FLASH_ATTENTION
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

    config_dict, _ = PretrainedConfig.get_config_dict(
        model_id, revision=revision, trust_remote_code=trust_remote_code
    )
    model_type = config_dict.get("model_type", None)

    quantization_config = config_dict.get("quantization_config", None)
    if quantization_config is not None and quantize is None:
        method = quantization_config.get("quant_method", None)
        if method in {"gptq", "awq", "exl2"}:
            log_master(logger.info, f"Auto selecting quantization method {method}")
            quantize = method
        elif method == "fbgemm_fp8":
            log_master(logger.info, "Auto selecting quantization method fp8")
            quantize = "fp8"
        else:
            log_master(logger.warning, f"Unknown quantization method {method}")

348
    if dtype is None:
349
        if quantize in ["awq", "exl2", "gptq", "marlin"]:
350
351
            # These quantizers only work with float16 params.
            dtype = torch.float16
352
        elif quantize == "fp8":
353
            from text_generation_server.layers.fp8 import FBGEMM_DYN_AVAILABLE
354

355
            if FBGEMM_DYN_AVAILABLE:
356
357
                # fbgemm kernels are fp8xfp8->bf16
                dtype = torch.bfloat16
358
359
360
361
        else:
            # Keep it as default for now and let
            # every model resolve their own default dtype.
            dtype = None
362
363
364
365
366
367
368
    elif dtype == "float16":
        dtype = torch.float16
    elif dtype == "bfloat16":
        dtype = torch.bfloat16
    else:
        raise RuntimeError(f"Unknown dtype {dtype}")

Nicolas Patry's avatar
Nicolas Patry committed
369
370
371
372
373
    if speculate is not None:
        set_speculate(speculate)
    else:
        set_speculate(0)

Nicolas Patry's avatar
Nicolas Patry committed
374
    speculator = None
Nicolas Patry's avatar
Nicolas Patry committed
375
    if "medusa_num_heads" in config_dict:
376
377
        medusa_model_id = model_id
        medusa_revision = revision
Nicolas Patry's avatar
Nicolas Patry committed
378
379
380
381
382
        model_id = config_dict["base_model_name_or_path"]
        revision = "main"
        speculate_medusa = config_dict["medusa_num_heads"]
        if speculate is not None:
            if speculate > speculate_medusa:
OlivierDehaene's avatar
OlivierDehaene committed
383
                raise RuntimeError(
OlivierDehaene's avatar
OlivierDehaene committed
384
                    f"Speculate is set to `{speculate}` but this medusa models only has `{speculate_medusa}` heads, please make them match"
OlivierDehaene's avatar
OlivierDehaene committed
385
                )
Nicolas Patry's avatar
Nicolas Patry committed
386
387
388
389
390
391
392
393
            else:
                set_speculate(speculate)
        else:
            set_speculate(speculate_medusa)

        config_dict, _ = PretrainedConfig.get_config_dict(
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )
Nicolas Patry's avatar
Nicolas Patry committed
394
395
        # Reload model type from parent.
        model_type = config_dict.get("model_type", None)
396
397
398
399
400
401
402
403
404
405
        is_local = Path(medusa_model_id).exists()
        if not is_local:
            medusa_config = hf_hub_download(
                medusa_model_id, revision=medusa_revision, filename="config.json"
            )
            hf_hub_download(
                medusa_model_id,
                revision=medusa_revision,
                filename="medusa_lm_head.safetensors",
            )
Nicolas Patry's avatar
Nicolas Patry committed
406
407
408
409
            speculator = {
                "path": Path(medusa_config).parent,
                "model_paths": ["medusa_lm_head.safetensors"],
            }
410
        else:
Nicolas Patry's avatar
Nicolas Patry committed
411
412
413
414
            speculator = {
                "path": Path(medusa_model_id),
                "model_paths": ["medusa_lm_head.safetensors"],
            }
415

Nicolas Patry's avatar
Nicolas Patry committed
416
        method = "medusa"
Nicolas Patry's avatar
Nicolas Patry committed
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
    elif model_type == "mlp_speculator":
        mlp_model_id = model_id
        mlp_revision = revision
        model_id = config_dict["base_model_name_or_path"]
        revision = "main"
        speculate_mlp = config_dict["n_predict"]
        if speculate is not None:
            if speculate > speculate_mlp:
                raise RuntimeError(
                    f"Speculate is set to `{speculate}` but this mlp_speculator models only has `{speculate_mlp}` heads, please make them match"
                )
            else:
                set_speculate(speculate)
        else:
            set_speculate(speculate_mlp)

        config_dict, _ = PretrainedConfig.get_config_dict(
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )
        # Reload model type from parent.
        model_type = config_dict.get("model_type", None)
        is_local = Path(mlp_model_id).exists()
        extension = ".safetensors"
        if not is_local:
            mlp_speculator_config = hf_hub_download(
                mlp_model_id, revision=mlp_revision, filename="config.json"
            )
            api = HfApi()
            info = api.model_info(mlp_model_id, revision=mlp_revision)
            filenames = [
                s.rfilename
                for s in info.siblings
                if s.rfilename.endswith(extension)
                and len(s.rfilename.split("/")) == 1
                and "arguments" not in s.rfilename
                and "args" not in s.rfilename
                and "training" not in s.rfilename
            ]
            for filename in filenames:
                hf_hub_download(
                    mlp_model_id,
                    revision=mlp_revision,
                    filename=filename,
                )
            speculator = {
                "path": Path(mlp_speculator_config).parent,
                "model_paths": filenames,
            }
        else:
            speculator = Path(mlp_model_id)
            filenames = [p for p in os.listdir(speculator) if p.endswith(extension)]
            speculator = {"path": speculator, "model_paths": filenames}
        method = "mlp_speculator"
Nicolas Patry's avatar
Nicolas Patry committed
470
471
472
473
474
    else:
        method = "n-gram"

    speculate = get_speculate()
    if speculate > 0:
475
476
477
        log_master(
            logger.info, f"Using speculation {method} with {speculate} input ids."
        )
Nicolas Patry's avatar
Nicolas Patry committed
478

drbh's avatar
drbh committed
479
480
481
482
483
484
485
486
487
488
    if model_type is None:
        # TODO: fix how we determine model type for Mamba
        if "ssm_cfg" in config_dict:
            # *only happens in Mamba case
            model_type = "ssm"
        else:
            raise RuntimeError(
                f"Could not determine model type for {model_id} revision {revision}"
            )

489
490
491
492
    if quantize == "exl2" and sharded:
        raise RuntimeError(
            "Sharding is currently not supported with `exl2` quantization"
        )
drbh's avatar
drbh committed
493
494
495
496
497
498

    sliding_window = (
        config_dict.get("sliding_window")
        if config_dict.get("sliding_window") is not None
        else -1
    )
499

500
501
502
503
504
505
506
507
508
    should_use_sliding_window = (
        sliding_window is not None and sliding_window != -1 and SUPPORTS_WINDOWING
    )

    if should_use_sliding_window:
        if max_input_tokens is not None and max_input_tokens > sliding_window:
            raise ValueError(
                f"The backend {SYSTEM} does not support sliding window attention that is used by the model type {model_type}. To use this model nonetheless with the {SYSTEM} backend, please launch TGI with the argument `--max-input-tokens` smaller than sliding_window={sliding_window} (got here max_input_tokens={max_input_tokens})."
            )
509

510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
    if model_type == DEEPSEEK_V2:
        if FLASH_ATTENTION:
            head_size = max(
                config_dict.get("qk_nope_dim", 128)
                + config_dict.get("qk_rope_dim", 64),
                config_dict.get("v_head_dim", 128),
            )
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashDeepseekV2ForCausalLM,
                revision=revision,
                quantize=quantize,
                speculator=speculator,
                default_dtype=torch.bfloat16,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
                lora_adapter_ids=lora_adapter_ids,
                config_class=DeepseekV2Config,
                head_size=head_size,
            )
        elif sharded:
            raise NotImplementedError(
                FLASH_ATT_ERROR_MESSAGE.format("Sharded Deepseek V2")
            )
        else:
            return CausalLM.fallback(
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
    elif model_type == MAMBA:
drbh's avatar
drbh committed
544
545
546
547
        return Mamba(
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
548
            speculator=speculator,
drbh's avatar
drbh committed
549
550
551
            dtype=dtype,
            trust_remote_code=trust_remote_code,
        )
552

OlivierDehaene's avatar
OlivierDehaene committed
553
    if model_id.startswith("facebook/galactica"):
554
555
556
557
558
        return CausalLM(
            model_id=model_id,
            # Yes galactica is just an OPT model.
            model_class=OPTForCausalLM,
            revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
559
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
560
            speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
561
562
            dtype=dtype,
            trust_remote_code=trust_remote_code,
563
            batch_class=GalacticaCausalLMBatch,
OlivierDehaene's avatar
OlivierDehaene committed
564
565
        )

566
    if (
567
568
        model_type == GPT_BIGCODE
        or model_type == GPT2
569
570
        and model_id.startswith("bigcode/")
    ):
571
        if FLASH_ATTENTION:
572
573
574
575
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashSantacoderForCausalLM,
                revision=revision,
576
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
577
                speculator=speculator,
578
                dtype=dtype,
579
                trust_remote_code=trust_remote_code,
580
581
582
                lora_adapter_ids=lora_adapter_ids,
                aliases={"transformer.wte.weight": ["lm_head.weight"]},
                num_kv_heads=1,
583
            )
584
585
586
587
        elif sharded:
            raise NotImplementedError(
                FLASH_ATT_ERROR_MESSAGE.format("Sharded Santacoder")
            )
588
        else:
589
590
591
            return CausalLM.fallback(
                model_id=model_id,
                revision=revision,
592
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
593
                speculator=speculator,
594
                dtype=dtype,
595
596
                trust_remote_code=trust_remote_code,
            )
597

598
    if model_type == BLOOM:
599
600
601
602
        return CausalLM(
            model_id=model_id,
            model_class=BloomForCausalLM,
            revision=revision,
603
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
604
            speculator=speculator,
605
606
            dtype=dtype,
            trust_remote_code=trust_remote_code,
607
            batch_class=BloomCausalLMBatch,
608
        )
609
    elif model_type == MPT:
610
611
612
613
        return CausalLM(
            model_id=model_id,
            model_class=MPTForCausalLM,
            revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
614
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
615
            speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
616
617
            dtype=dtype,
            trust_remote_code=trust_remote_code,
618
            batch_class=CausalLMBatchKeysLast,
619
        )
620
    elif model_type == GPT2:
621
        if FLASH_ATTENTION:
622
            try:
623
624
625
626
                return FlashCausalLM(
                    model_id=model_id,
                    model_class=FlashGPT2ForCausalLM,
                    revision=revision,
627
628
629
630
                    quantize=quantize,
                    speculator=speculator,
                    dtype=dtype,
                    trust_remote_code=trust_remote_code,
631
                    lora_adapter_ids=lora_adapter_ids,
632
633
634
                )
            except RuntimeError as e:
                # Lots of legacy models with various weight names.
635
                log_master(logger.warning, f"Couldn't load flash gpt2 variant: {e}")
636
                return CausalLM.fallback(
637
638
639
640
641
642
643
                    model_id,
                    revision,
                    quantize=quantize,
                    speculator=speculator,
                    dtype=dtype,
                    trust_remote_code=trust_remote_code,
                )
644
645
646
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded GPT-2"))
        else:
647
            return CausalLM.fallback(
648
649
650
651
652
653
654
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
    elif model_type == GPTJ:
        if FLASH_ATTENTION:
            try:
                return FlashCausalLM(
                    model_id=model_id,
                    model_class=FlashGPTJForCausalLM,
                    revision=revision,
                    quantize=quantize,
                    speculator=speculator,
                    dtype=dtype,
                    trust_remote_code=trust_remote_code,
                    lora_adapter_ids=lora_adapter_ids,
                )
            except RuntimeError as e:
                # Lots of legacy models with various weight names.
                log_master(logger.warning, f"Couldn't load flash gptj variant: {e}")
                return CausalLM.fallback(
                    model_id,
                    revision,
                    quantize=quantize,
                    speculator=speculator,
                    dtype=dtype,
                    trust_remote_code=trust_remote_code,
                )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded GPT-J"))
        else:
            return CausalLM.fallback(
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
690
    elif model_type == GPT_NEOX:
691
        if FLASH_ATTENTION:
692
693
694
695
            from text_generation_server.models.custom_modeling.flash_neox_modeling import (
                GPTNeoXConfig,
            )

696
697
698
699
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashGPTNeoXForCausalLM,
                revision=revision,
700
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
701
                speculator=speculator,
702
                dtype=dtype,
703
                trust_remote_code=trust_remote_code,
704
                lora_adapter_ids=lora_adapter_ids,
705
                config_class=GPTNeoXConfig,
706
707
            )
        elif sharded:
708
709
710
711
            return CausalLM(
                model_id=model_id,
                model_class=GPTNeoxForCausalLM,
                revision=revision,
712
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
713
                speculator=speculator,
714
                dtype=dtype,
715
716
                trust_remote_code=trust_remote_code,
            )
717
        else:
718
            return CausalLM.fallback(
719
720
721
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
722
                speculator=speculator,
723
                dtype=dtype,
724
725
                trust_remote_code=trust_remote_code,
            )
OlivierDehaene's avatar
OlivierDehaene committed
726

727
    elif model_type == PHI:
drbh's avatar
drbh committed
728
        if FLASH_ATTENTION:
729
730
731
732
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashPhiForCausalLM,
                revision=revision,
drbh's avatar
drbh committed
733
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
734
                speculator=speculator,
drbh's avatar
drbh committed
735
736
                dtype=dtype,
                trust_remote_code=trust_remote_code,
737
                lora_adapter_ids=lora_adapter_ids,
drbh's avatar
drbh committed
738
739
            )
        else:
740
            return CausalLM.fallback(
drbh's avatar
drbh committed
741
742
743
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
744
                speculator=speculator,
drbh's avatar
drbh committed
745
746
747
748
749
750
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

    elif model_type == "phi-msft":
        if FLASH_ATTENTION:
OlivierDehaene's avatar
OlivierDehaene committed
751
752
753
            raise NotImplementedError(
                "Legacy phi-msft is not supported with Flash Attention"
            )
drbh's avatar
drbh committed
754
        else:
755
756
757
758
759
            return CausalLM(
                model_id=model_id,
                model_class=PhiForCausalLM,
                config_class=PhiConfig,
                revision=revision,
drbh's avatar
drbh committed
760
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
761
                speculator=speculator,
drbh's avatar
drbh committed
762
763
764
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
765

766
    elif model_type == LLAMA or model_type == BAICHUAN or model_type == PHI3:
767
        print(f">>> model_type: {model_type}")
768
        if FLASH_ATTENTION:
769
770
771
772
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashLlamaForCausalLM,
                revision=revision,
773
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
774
                speculator=speculator,
775
                dtype=dtype,
776
                trust_remote_code=trust_remote_code,
drbh's avatar
drbh committed
777
                lora_adapter_ids=lora_adapter_ids,
778
            )
779
780
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Llama"))
781
        else:
782
            return CausalLM.fallback(
783
784
785
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
786
                speculator=speculator,
787
                dtype=dtype,
788
789
                trust_remote_code=trust_remote_code,
            )
790
    if model_type == GEMMA:
791
        if FLASH_ATTENTION:
792
793
794
795
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashGemmaForCausalLM,
                revision=revision,
796
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
797
                speculator=speculator,
798
                dtype=dtype,
799
800
                # Works better for these models
                default_dtype=torch.bfloat16,
801
                trust_remote_code=trust_remote_code,
802
                lora_adapter_ids=lora_adapter_ids,
803
804
            )
        elif sharded:
OlivierDehaene's avatar
OlivierDehaene committed
805
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Gemma"))
806
        else:
807
            return CausalLM.fallback(
808
809
810
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
811
                speculator=speculator,
812
813
814
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
Nicolas Patry's avatar
Nicolas Patry committed
815
816
    elif model_type == GEMMA2:
        if FLASH_ATTENTION:
817
818
819
820
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashGemma2ForCausalLM,
                revision=revision,
Nicolas Patry's avatar
Nicolas Patry committed
821
822
823
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
824
825
                # Works better for these models
                default_dtype=torch.bfloat16,
Nicolas Patry's avatar
Nicolas Patry committed
826
                trust_remote_code=trust_remote_code,
827
                lora_adapter_ids=lora_adapter_ids,
Nicolas Patry's avatar
Nicolas Patry committed
828
829
830
831
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Gemma2"))
        else:
832
            return CausalLM.fallback(
Nicolas Patry's avatar
Nicolas Patry committed
833
834
835
836
837
838
839
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
840

841
    if model_type == COHERE:
OlivierDehaene's avatar
OlivierDehaene committed
842
        if FLASH_ATTENTION:
843
844
845
846
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashCohereForCausalLM,
                revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
847
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
848
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
849
850
                dtype=dtype,
                trust_remote_code=trust_remote_code,
851
                lora_adapter_ids=lora_adapter_ids,
OlivierDehaene's avatar
OlivierDehaene committed
852
853
854
855
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Cohere"))
        else:
856
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
857
858
859
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
860
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
861
862
863
864
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

865
    if model_type == DBRX:
866
        if FLASH_ATTENTION:
867
868
869
870
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashDbrxForCausalLM,
                revision=revision,
871
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
872
                speculator=speculator,
873
                dtype=dtype,
874
875
                # Dbrx works better in bfloat16.
                default_dtype=torch.bfloat16,
876
                trust_remote_code=trust_remote_code,
877
878
                lora_adapter_ids=lora_adapter_ids,
                config_class=DbrxConfig,
879
880
881
882
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded DBRX"))
        else:
883
            return CausalLM.fallback(
884
885
886
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
887
                speculator=speculator,
888
889
890
891
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

892
    if model_type in ["RefinedWeb", "RefinedWebModel", FALCON]:
893
894
        if sharded:
            if FLASH_ATTENTION:
895
                if config_dict.get("alibi", False):
896
                    raise NotImplementedError("sharded is not supported for this model")
897
898
899
900
                return FlashCausalLM(
                    model_id=model_id,
                    model_class=FlashRWForCausalLM,
                    revision=revision,
901
                    quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
902
                    speculator=speculator,
903
                    dtype=dtype,
904
905
906
907
                    aliases={
                        "lm_head.weight": ["transformer.word_embeddings.weight"],
                        "transformer.word_embeddings.weight": ["lm_head.weight"],
                    },
908
                    trust_remote_code=trust_remote_code,
909
910
                    lora_adapter_ids=lora_adapter_ids,
                    config_class=RWConfig,
911
                )
912
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Falcon"))
913
        else:
914
            if FLASH_ATTENTION and not config_dict.get("alibi", False):
915
916
917
918
                return FlashCausalLM(
                    model_id=model_id,
                    model_class=FlashRWForCausalLM,
                    revision=revision,
919
                    quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
920
                    speculator=speculator,
921
                    dtype=dtype,
922
923
924
925
                    aliases={
                        "lm_head.weight": ["transformer.word_embeddings.weight"],
                        "transformer.word_embeddings.weight": ["lm_head.weight"],
                    },
926
                    trust_remote_code=trust_remote_code,
927
928
                    lora_adapter_ids=lora_adapter_ids,
                    config_class=RWConfig,
929
930
                )
            else:
931
                return CausalLM.fallback(
932
933
934
                    model_id,
                    revision,
                    quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
935
                    speculator=speculator,
936
                    dtype=dtype,
937
938
939
                    trust_remote_code=trust_remote_code,
                )

940
    if model_type == MISTRAL:
941
        if FLASH_ATTENTION:
942
943
944
945
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashMistralForCausalLM,
                revision=revision,
946
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
947
                speculator=speculator,
948
949
                dtype=dtype,
                trust_remote_code=trust_remote_code,
950
                lora_adapter_ids=lora_adapter_ids,
951
            )
OlivierDehaene's avatar
OlivierDehaene committed
952
953
954
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Mistral"))
        else:
955
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
956
957
958
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
959
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
960
961
962
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
OlivierDehaene's avatar
OlivierDehaene committed
963

964
    if model_type == MIXTRAL:
965
        if FLASH_ATTENTION:
966
967
968
969
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashMixtralForCausalLM,
                revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
970
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
971
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
972
                dtype=dtype,
OlivierDehaene's avatar
OlivierDehaene committed
973
                trust_remote_code=trust_remote_code,
974
                lora_adapter_ids=lora_adapter_ids,
OlivierDehaene's avatar
OlivierDehaene committed
975
            )
OlivierDehaene's avatar
OlivierDehaene committed
976
977
978
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Mixtral"))
        else:
979
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
980
981
982
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
983
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
984
985
986
987
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

988
    if model_type == STARCODER2:
989
        if FLASH_ATTENTION:
990
991
992
993
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashStarcoder2ForCausalLM,
                revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
994
                quantize=quantize,
995
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
996
                dtype=dtype,
OlivierDehaene's avatar
OlivierDehaene committed
997
                trust_remote_code=trust_remote_code,
998
                lora_adapter_ids=lora_adapter_ids,
OlivierDehaene's avatar
OlivierDehaene committed
999
1000
1001
1002
1003
1004
            )
        elif sharded:
            raise NotImplementedError(
                FLASH_ATT_ERROR_MESSAGE.format("Sharded Starcoder2")
            )
        else:
1005
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
1006
1007
1008
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1009
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1010
1011
1012
1013
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

1014
    if model_type == QWEN2:
1015
        if FLASH_ATTENTION:
1016
1017
1018
1019
            return FlashCausalLM(
                model_id=model_id,
                model_class=Qwen2ForCausalLM,
                revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
1020
                quantize=quantize,
1021
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1022
1023
                dtype=dtype,
                trust_remote_code=trust_remote_code,
1024
                lora_adapter_ids=lora_adapter_ids,
OlivierDehaene's avatar
OlivierDehaene committed
1025
1026
1027
1028
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Qwen2"))
        else:
1029
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
1030
1031
1032
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1033
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1034
                dtype=dtype,
OlivierDehaene's avatar
OlivierDehaene committed
1035
1036
                trust_remote_code=trust_remote_code,
            )
1037

1038
    if model_type == OPT:
1039
1040
1041
1042
        return CausalLM(
            model_id=model_id,
            model_class=OPTForCausalLM,
            revision=revision,
1043
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1044
            speculator=speculator,
1045
1046
            dtype=dtype,
            trust_remote_code=trust_remote_code,
1047
        )
1048

1049
    if model_type == T5:
1050
1051
1052
1053
        return Seq2SeqLM(
            model_id=model_id,
            model_class=T5ForConditionalGeneration,
            revision=revision,
1054
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1055
            speculator=speculator,
1056
            dtype=dtype,
1057
            trust_remote_code=trust_remote_code,
1058
1059
1060
1061
1062
1063
            aliases={
                "shared.weight": [
                    "encoder.embed_tokens.weight",
                    "decoder.embed_tokens.weight",
                ]
            },
1064
        )
1065
    if model_type == IDEFICS:
1066
        if FLASH_ATTENTION:
OlivierDehaene's avatar
OlivierDehaene committed
1067
1068
1069
1070
            return IDEFICSSharded(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1071
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1072
1073
1074
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
1075
1076
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
1077
    if model_type == IDEFICS2:
Nicolas Patry's avatar
Nicolas Patry committed
1078
        if FLASH_ATTENTION:
1079
1080
1081
1082
            return VlmCausalLM(
                model_id=model_id,
                model_class=Idefics2ForConditionalGeneration,
                revision=revision,
Nicolas Patry's avatar
Nicolas Patry committed
1083
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1084
                speculator=speculator,
Nicolas Patry's avatar
Nicolas Patry committed
1085
1086
                dtype=dtype,
                trust_remote_code=trust_remote_code,
1087
1088
1089
1090
                lora_adapter_ids=lora_adapter_ids,
                # XXX: Extremely important to cap resolution in order to limit
                # VRAM usage.
                processor_kwargs={"size": {"longest_edge": 448, "shortest_edge": 378}},
Nicolas Patry's avatar
Nicolas Patry committed
1091
1092
1093
            )
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
1094
    if model_type == PALIGEMMA:
drbh's avatar
drbh committed
1095
        if FLASH_ATTENTION:
1096
1097
1098
1099
            return VlmCausalLM(
                model_id=model_id,
                model_class=PaliGemmaForConditionalGeneration,
                revision=revision,
drbh's avatar
drbh committed
1100
1101
1102
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
1103
1104
                # Works better for these models
                default_dtype=torch.bfloat16,
drbh's avatar
drbh committed
1105
                trust_remote_code=trust_remote_code,
1106
1107
                lora_adapter_ids=lora_adapter_ids,
                batch_class=PaliGemmaBatch,
drbh's avatar
drbh committed
1108
1109
1110
            )
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
1111

1112
    if model_type == LLAVA_NEXT:
1113
        if FLASH_ATTENTION:
1114
1115
1116
1117
            return VlmCausalLM(
                model_class=LlavaNextForConditionalGeneration,
                model_id=model_id,
                revision=revision,
1118
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1119
                speculator=speculator,
1120
1121
1122
1123
1124
1125
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("LlavaNext"))

1126
    if sharded:
1127
        raise NotImplementedError("sharded is not supported for AutoModel")
1128
    if quantize == "gptq":
1129
        raise NotImplementedError(
1130
1131
            "gptq quantization is not supported for AutoModel, you can try to quantize it with `text-generation-server quantize ORIGINAL_MODEL_ID NEW_MODEL_ID`"
        )
1132
    if quantize == "awq":
1133
        raise NotImplementedError("awq quantization is not supported for AutoModel")
Nicolas Patry's avatar
Nicolas Patry committed
1134
    elif (quantize == "bitsandbytes-fp4") or (quantize == "bitsandbytes-nf4"):
1135
        raise NotImplementedError("4bit quantization is not supported for AutoModel")
OlivierDehaene's avatar
OlivierDehaene committed
1136
    elif quantize == "eetq":
1137
        raise NotImplementedError("Eetq quantization is not supported for AutoModel")
1138
1139
    elif quantize == "exl2":
        raise NotImplementedError("exl2 quantization is not supported for AutoModel")
1140
    if model_type in modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES:
1141
        return CausalLM.fallback(
1142
1143
1144
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1145
            speculator=speculator,
1146
1147
            dtype=dtype,
            trust_remote_code=trust_remote_code,
1148
        )
1149
    if model_type in modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES:
1150
        return Seq2SeqLM.fallback(
1151
1152
1153
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1154
            speculator=speculator,
1155
1156
            dtype=dtype,
            trust_remote_code=trust_remote_code,
1157
1158
        )

1159
    auto_map = config_dict.get("auto_map", None)
1160
1161
    if trust_remote_code and auto_map is not None:
        if "AutoModelForCausalLM" in auto_map.keys():
1162
            return CausalLM.fallback(
1163
1164
1165
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1166
                speculator=speculator,
1167
                dtype=dtype,
1168
1169
                trust_remote_code=trust_remote_code,
            )
1170
        if "AutoModelForSeq2SeqLM" in auto_map.keys():
1171
            return Seq2SeqLM.fallback(
1172
1173
1174
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1175
                speculator=speculator,
1176
                dtype=dtype,
1177
1178
                trust_remote_code=trust_remote_code,
            )
1179
1180

    raise ValueError(f"Unsupported model type {model_type}")
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293


# get_model_with_lora_adapters wraps the internal get_model function and adds support for loading adapters
# this provides a post model loading hook to load adapters into the model after the model has been loaded
def get_model_with_lora_adapters(
    model_id: str,
    lora_adapters: Optional[List[AdapterInfo]],
    revision: Optional[str],
    sharded: bool,
    quantize: Optional[str],
    speculate: Optional[int],
    dtype: Optional[str],
    trust_remote_code: bool,
    max_input_tokens: int,
    adapter_to_index: Dict[str, int],
):
    lora_adapter_ids = [adapter.id for adapter in lora_adapters]
    model = get_model(
        model_id,
        lora_adapter_ids,
        revision,
        sharded,
        quantize,
        speculate,
        dtype,
        trust_remote_code,
        max_input_tokens,
    )

    if len(lora_adapters) > 0:
        target_to_layer = build_layer_weight_lookup(model.model)

        for index, adapter in enumerate(lora_adapters):
            # The AdapterParameters object allows for merging multiple adapters into a single adapter.
            # At the moment, we only support loading a single adapter into the model, but we keep the
            # AdapterParameters object for easier extension in the future.
            adapter_parameters = AdapterParameters(
                adapter_info=[adapter],
                # when merging multiple adapters we can weight them differently
                # if this is not set, all adapters will be weighted equally
                # see: text_generation_server.utils.merges.strategies for impl
                weights=None,
                merge_strategy=0,
                density=1.0,
                majority_sign_method=0,
            )

            adapter_index = index + 1
            adapter_to_index[adapter.id] = adapter_index

            logger.info(
                f"Loading adapter weights into model: {','.join([adapter.id for adapter in adapter_parameters.adapter_info])}"
            )
            weight_names = tuple([v[0] for v in target_to_layer.values()])
            (
                module_map,
                adapter_config,
                adapter_weight_names,
                adapter_tokenizer,
            ) = load_and_merge_adapters(
                model.model_id,
                adapter_parameters,
                adapter_index,
                weight_names,
                False,
            )

            unused_weight_names = adapter_weight_names.copy()

            adapter_layers = [
                "q_proj",
                "k_proj",
                "v_proj",
                "o_proj",
                "gate_proj",
                "up_proj",
                "down_proj",
            ]

            for layer_name in adapter_layers:
                nlayers = (
                    1 if layer_name == "lm_head" else len(model.model.model.layers)
                )
                adapter_weights = LoraWeights.prepare_weights(
                    config=adapter_config,
                    module_map=module_map,
                    layer_type=layer_name,
                    unused_weight_names=unused_weight_names,
                    nlayers=nlayers,
                    dtype=model.dtype,
                    world_size=model.world_size,
                    process_group=model.process_group,
                    target_to_layer=target_to_layer,
                )

                if adapter_weights is None:
                    continue

                model.layer_to_adapter_weights[layer_name].add_adapter(
                    adapter_index, adapter_weights
                )

            if len(unused_weight_names) > 0:
                logger.warning(
                    f"{','.join(adapter_parameters.adapter_ids)} unused adapter weights: {unused_weight_names}"
                )

            if adapter_tokenizer is not None:
                model.tokenizers.add_tokenizer(adapter_index, adapter_tokenizer)

            model.loaded_adapters.add(adapter_index)

    return model