bloom.py 8.96 KB
Newer Older
1
2
3
import torch
import torch.distributed

4
from typing import List, Optional, Type
5
6
7

from accelerate import init_empty_weights
from safetensors import safe_open
8
9
10
11
12
13
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    AutoConfig,
    PreTrainedTokenizerBase,
)
14
15
16
17
18
19
from transformers.models.bloom.parallel_layers import (
    TensorParallelColumnLinear,
    TensorParallelEmbedding,
    TensorParallelRowLinear,
)

20
from text_generation.models import CausalLM
21
22
from text_generation.models.causal_lm import CausalLMBatch
from text_generation.pb import generate_pb2
23
24
25
26
27
28
29
30
31
32
33
34
35
from text_generation.utils import (
    initialize_torch_distributed,
    weight_files,
)

HAS_BITS_AND_BYTES = True
try:
    import bitsandbytes as bnb
    from bitsandbytes.nn import Int8Params
except Exception as e:
    HAS_BITS_AND_BYTES = False


36
37
38
class BloomCausalLMBatch(CausalLMBatch):
    @classmethod
    def from_pb(
39
40
41
42
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        device: torch.device,
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
    ) -> "CausalLMBatch":
        batch = super(BloomCausalLMBatch, cls).from_pb(
            pb=pb, tokenizer=tokenizer, device=device
        )
        batch.keys_head_dim_last = False
        return batch


class BLOOM(CausalLM):
    @property
    def batch_type(self) -> Type[CausalLMBatch]:
        return BloomCausalLMBatch


class BLOOMSharded(BLOOM):
58
    def __init__(
59
        self, model_id: str, revision: Optional[str] = None, quantize: bool = False
60
    ):
61
62
        if not model_id.startswith("bigscience/bloom"):
            raise ValueError(f"Model {model_id} is not supported")
63

64
65
66
        self.process_group, self.rank, self.world_size = initialize_torch_distributed()
        self.master = self.rank == 0
        if torch.cuda.is_available():
67
            device = torch.device(f"cuda:{self.rank}")
68
            dtype = torch.bfloat16
69
        else:
70
            device = torch.device("cpu")
71
72
            dtype = torch.float32

73
        tokenizer = AutoTokenizer.from_pretrained(
74
            model_id, revision=revision, padding_side="left"
75
        )
76
77

        config = AutoConfig.from_pretrained(
78
            model_id, revision=revision, slow_but_exact=False, tp_parallel=True
79
80
81
82
        )
        config.pad_token_id = 3

        torch.distributed.barrier(group=self.process_group)
83
        filenames = weight_files(model_id, revision=revision, extension=".safetensors")
84
85
86
87
88
89
90
91
92

        with init_empty_weights():
            model = AutoModelForCausalLM.from_config(config)

        torch.distributed.barrier(group=self.process_group)
        self.load_weights(
            model,
            filenames,
            quantize=quantize,
93
            device=device,
94
95
96
97
98
            rank=self.rank,
            world_size=self.world_size,
        )
        self.model = model.eval().to(dtype)
        torch.distributed.barrier(group=self.process_group)
99
100
101
102
        super(CausalLM, self).__init__(
            tokenizer=tokenizer,
            device=device,
        )
103
104
105

    @staticmethod
    def load_weights(
106
107
108
109
110
111
        model,
        filenames: List[str],
        quantize: bool,
        device: torch.device,
        rank: int,
        world_size: int,
112
113
114
115
    ):
        parameters = dict(model.named_parameters())
        for file in filenames:
            with safe_open(
116
                file, framework="pt", device=str(device) if not quantize else "cpu"
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
            ) as f:
                for name in f.keys():
                    full_name = f"transformer.{name}"

                    module_name, param_name = full_name.rsplit(".", 1)
                    module = model.get_submodule(module_name)
                    current_tensor = parameters[full_name]

                    slice_ = f.get_slice(name)

                    if isinstance(module, TensorParallelColumnLinear):
                        if param_name == "weight":
                            size = slice_.get_shape()[0]
                            block_size = size // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            tensor = slice_[start:stop]
                        else:
                            size = slice_.get_shape()[0]
                            block_size = size // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            tensor = slice_[start:stop]
                    elif isinstance(module, TensorParallelRowLinear):
                        if param_name == "weight":
                            size = slice_.get_shape()[1]
                            block_size = size // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            tensor = slice_[:, start:stop]
                        else:
                            tensor = slice_[:]
                            # XXX: Hack for Rowlinear to add the bias only once.
                            if rank != 0:
                                tensor = torch.zeros_like(tensor)
                    elif isinstance(module, TensorParallelEmbedding):
                        size = slice_.get_shape()[0]
                        block_size = size // world_size
                        start = rank * block_size
                        stop = (rank + 1) * block_size
                        tensor = slice_[start:stop]
                    else:
                        tensor = slice_[:]

                    if current_tensor.shape != tensor.shape:
                        raise ValueError(
                            f"Name {name} -- Current {current_tensor.shape} and got {tensor.shape}"
                        )

                    tensor = tensor.contiguous()

                    if quantize:
                        if not HAS_BITS_AND_BYTES:
                            raise ImportError(
                                "bitsandbytes is not available on your machine either because it is not installed "
                                "or you don't have a GPU.\n"
                                "You can install it with `pip install bitsandbytes`."
                            )

                        if (
177
178
179
                            type(module)
                            in [TensorParallelRowLinear, TensorParallelColumnLinear]
                            and param_name == "weight"
180
181
                        ):
                            tensor = Int8Params(
182
                                tensor,
183
184
185
186
187
188
189
190
191
192
193
194
195
                                has_fp16_weights=False,
                                requires_grad=False,
                            ).to(device)
                            state = bnb.MatmulLtState()
                            state.threshold = 6.0
                            state.has_fp16_weights = False
                            state.memory_efficient_backward = False
                            state.use_pool = True
                            state.CB = tensor.CB
                            state.SCB = tensor.SCB
                            tensor.CB = None
                            tensor.SCB = None

196
                            def replace_linear(state):
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
                                def linear(input, weight, bias):
                                    out = bnb.matmul(
                                        input,
                                        weight,
                                        state=state,
                                        threshold=state.threshold,
                                        bias=bias,
                                    )

                                    if state.CB is not None:
                                        # we converted 8-bit row major to turing/ampere format
                                        # in the first inference pass
                                        # we no longer need the row-major weight
                                        del state.CB
                                        weight.data = state.CxB

213
                                    return out
214
215
216

                                return linear

217
                            module.linear = replace_linear(state)
218
219
220
221
222
223
224
225

                        else:
                            tensor = tensor.to(device)

                    module._parameters[param_name] = tensor
                    if name == "word_embeddings.weight":
                        model.lm_head._parameters["weight"] = tensor

226
227
228
    def forward(
        self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
    ):
229
230
231
        outputs = self.model.forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
232
            position_ids=position_ids,
233
234
235
236
237
            past_key_values=past_key_values,
            use_cache=True,
        )

        # Logits are sharded, so we need to gather them
OlivierDehaene's avatar
OlivierDehaene committed
238
239
240
        logits = [torch.empty_like(outputs.logits) for _ in range(self.world_size)]
        torch.distributed.all_gather(logits, outputs.logits, group=self.process_group)
        logits = torch.cat(logits, dim=2)
241

242
        return logits, outputs.past_key_values