"vscode:/vscode.git/clone" did not exist on "cb6f96b6877c77d145ad4644f8183f71fefc430e"
prepare_data.py 10.2 KB
Newer Older
Yizhou Wang's avatar
Yizhou Wang committed
1
2
3
4
5
6
7
8
import os
import sys
import shutil
import numpy as np
import json
import pickle
import argparse

Yizhou Wang's avatar
Yizhou Wang committed
9
10
11
from cruw import CRUW
from cruw.annotation.init_json import init_meta_json
from cruw.mapping import ra2idx
Yizhou Wang's avatar
Yizhou Wang committed
12
13

from rodnet.core.confidence_map import generate_confmap, normalize_confmap, add_noise_channel
14
from rodnet.utils.load_configs import load_configs_from_file, update_config_dict
Yizhou Wang's avatar
Yizhou Wang committed
15
16
17
18
19
20
21
22
from rodnet.utils.visualization import visualize_confmap

SPLITS_LIST = ['train', 'valid', 'test', 'demo']


def parse_args():
    parser = argparse.ArgumentParser(description='Prepare RODNet data.')
    parser.add_argument('--config', type=str, dest='config', help='configuration file path')
23
24
    parser.add_argument('--data_root', type=str,
                        help='directory to the dataset (will overwrite data_root in config file)')
25
    parser.add_argument('--sensor_config', type=str, default='sensor_config_rod2021')
yizhou-wang's avatar
yizhou-wang committed
26
27
    parser.add_argument('--split', type=str, dest='split', default='',
                        help='choose from train, valid, test, supertest')
Yizhou Wang's avatar
Yizhou Wang committed
28
29
30
31
32
33
34
    parser.add_argument('--out_data_dir', type=str, default='./data',
                        help='data directory to save the prepared data')
    parser.add_argument('--overwrite', action="store_true", help="overwrite prepared data if exist")
    args = parser.parse_args()
    return args


Yizhou Wang's avatar
Yizhou Wang committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
def load_anno_txt(txt_path, n_frame, dataset):
    folder_name_dict = dict(
        cam_0='IMAGES_0',
        rad_h='RADAR_RA_H'
    )
    anno_dict = init_meta_json(n_frame, folder_name_dict)
    with open(txt_path, 'r') as f:
        data = f.readlines()
    for line in data:
        frame_id, r, a, class_name = line.rstrip().split()
        frame_id = int(frame_id)
        r = float(r)
        a = float(a)
        rid, aid = ra2idx(r, a, dataset.range_grid, dataset.angle_grid)
        anno_dict[frame_id]['rad_h']['n_objects'] += 1
        anno_dict[frame_id]['rad_h']['obj_info']['categories'].append(class_name)
        anno_dict[frame_id]['rad_h']['obj_info']['centers'].append([r, a])
        anno_dict[frame_id]['rad_h']['obj_info']['center_ids'].append([rid, aid])
        anno_dict[frame_id]['rad_h']['obj_info']['scores'].append(1.0)

    return anno_dict


def generate_confmaps(metadata_dict, n_class, viz):
    confmaps = []
    for metadata_frame in metadata_dict:
        n_obj = metadata_frame['rad_h']['n_objects']
        obj_info = metadata_frame['rad_h']['obj_info']
        if n_obj == 0:
            confmap_gt = np.zeros(
                (n_class + 1, radar_configs['ramap_rsize'], radar_configs['ramap_asize']),
                dtype=float)
            confmap_gt[-1, :, :] = 1.0  # initialize noise channal
        else:
            confmap_gt = generate_confmap(n_obj, obj_info, dataset, config_dict)
            confmap_gt = normalize_confmap(confmap_gt)
            confmap_gt = add_noise_channel(confmap_gt, dataset, config_dict)
        assert confmap_gt.shape == (
            n_class + 1, radar_configs['ramap_rsize'], radar_configs['ramap_asize'])
        if viz:
            visualize_confmap(confmap_gt)
        confmaps.append(confmap_gt)
    confmaps = np.array(confmaps)
    return confmaps


Yizhou Wang's avatar
Yizhou Wang committed
81
82
83
84
85
86
87
def prepare_data(dataset, config_dict, data_dir, split, save_dir, viz=False, overwrite=False):
    """
    Prepare pickle data for RODNet training and testing
    :param dataset: dataset object
    :param config_dict: rodnet configurations
    :param data_dir: output directory of the processed data
    :param split: train, valid, test, demo, etc.
Yizhou Wang's avatar
Yizhou Wang committed
88
    :param save_dir: output directory of the prepared data
Yizhou Wang's avatar
Yizhou Wang committed
89
90
91
92
93
94
95
96
97
98
99
    :param viz: whether visualize the prepared data
    :param overwrite: whether overwrite the existing prepared data
    :return:
    """
    camera_configs = dataset.sensor_cfg.camera_cfg
    radar_configs = dataset.sensor_cfg.radar_cfg
    n_chirp = radar_configs['n_chirps']
    n_class = dataset.object_cfg.n_class

    data_root = config_dict['dataset_cfg']['data_root']
    anno_root = config_dict['dataset_cfg']['anno_root']
100
    if split is None:
yizhou-wang's avatar
yizhou-wang committed
101
102
103
104
105
        set_cfg = {
            'subdir': '',
            'seqs': sorted(os.listdir(data_root))
        }
        sets_seqs = sorted(os.listdir(data_root))
Yizhou Wang's avatar
Yizhou Wang committed
106
    else:
yizhou-wang's avatar
yizhou-wang committed
107
108
109
110
111
        set_cfg = config_dict['dataset_cfg'][split]
        if 'seqs' not in set_cfg:
            sets_seqs = sorted(os.listdir(os.path.join(data_root, set_cfg['subdir'])))
        else:
            sets_seqs = set_cfg['seqs']
Yizhou Wang's avatar
Yizhou Wang committed
112
113
114
115
116
117
118

    if overwrite:
        if os.path.exists(os.path.join(data_dir, split)):
            shutil.rmtree(os.path.join(data_dir, split))
        os.makedirs(os.path.join(data_dir, split))

    for seq in sets_seqs:
Yizhou Wang's avatar
Yizhou Wang committed
119
120
        seq_path = os.path.join(data_root, set_cfg['subdir'], seq)
        seq_anno_path = os.path.join(anno_root, set_cfg['subdir'], seq + config_dict['dataset_cfg']['anno_ext'])
Yizhou Wang's avatar
Yizhou Wang committed
121
122
123
124
125
126
127
        save_path = os.path.join(save_dir, seq + '.pkl')
        print("Sequence %s saving to %s" % (seq_path, save_path))

        try:
            if not overwrite and os.path.exists(save_path):
                print("%s already exists, skip" % save_path)
                continue
128

Yizhou Wang's avatar
Yizhou Wang committed
129
            image_dir = os.path.join(seq_path, camera_configs['image_folder'])
130
131
132
133
134
135
136
            if os.path.exists(image_dir):
                image_paths = sorted([os.path.join(image_dir, name) for name in os.listdir(image_dir) if
                                      name.endswith(camera_configs['ext'])])
                n_frame = len(image_paths)
            else:  # camera images are not available
                image_paths = None
                n_frame = None
Yizhou Wang's avatar
Yizhou Wang committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

            radar_dir = os.path.join(seq_path, dataset.sensor_cfg.radar_cfg['chirp_folder'])
            if radar_configs['data_type'] == 'RI' or radar_configs['data_type'] == 'AP':
                radar_paths = sorted([os.path.join(radar_dir, name) for name in os.listdir(radar_dir) if
                                      name.endswith(dataset.sensor_cfg.radar_cfg['ext'])])
                n_radar_frame = len(radar_paths)
                assert n_frame == n_radar_frame
            elif radar_configs['data_type'] == 'RISEP' or radar_configs['data_type'] == 'APSEP':
                radar_paths_chirp = []
                for chirp_id in range(n_chirp):
                    chirp_dir = os.path.join(radar_dir, '%04d' % chirp_id)
                    paths = sorted([os.path.join(chirp_dir, name) for name in os.listdir(chirp_dir) if
                                    name.endswith(config_dict['dataset_cfg']['radar_cfg']['ext'])])
                    n_radar_frame = len(paths)
                    assert n_frame == n_radar_frame
                    radar_paths_chirp.append(paths)
                radar_paths = []
                for frame_id in range(n_frame):
                    frame_paths = []
                    for chirp_id in range(n_chirp):
                        frame_paths.append(radar_paths_chirp[chirp_id][frame_id])
                    radar_paths.append(frame_paths)
Yizhou Wang's avatar
Yizhou Wang committed
159
            elif radar_configs['data_type'] == 'ROD2021':
160
161
162
163
                if n_frame is not None:
                    assert len(os.listdir(radar_dir)) == n_frame * len(radar_configs['chirp_ids'])
                else:  # camera images are not available
                    n_frame = int(len(os.listdir(radar_dir)) / len(radar_configs['chirp_ids']))
Yizhou Wang's avatar
Yizhou Wang committed
164
165
166
167
168
169
170
171
                radar_paths = []
                for frame_id in range(n_frame):
                    chirp_paths = []
                    for chirp_id in radar_configs['chirp_ids']:
                        path = os.path.join(radar_dir, '%06d_%04d.' % (frame_id, chirp_id) +
                                            dataset.sensor_cfg.radar_cfg['ext'])
                        chirp_paths.append(path)
                    radar_paths.append(chirp_paths)
Yizhou Wang's avatar
Yizhou Wang committed
172
173
174
175
176
177
178
179
180
181
182
183
184
            else:
                raise ValueError

            data_dict = dict(
                data_root=data_root,
                data_path=seq_path,
                seq_name=seq,
                n_frame=n_frame,
                image_paths=image_paths,
                radar_paths=radar_paths,
                anno=None,
            )

185
            if split == 'demo' or not os.path.exists(seq_anno_path):
Yizhou Wang's avatar
Yizhou Wang committed
186
187
188
189
190
                # no labels need to be saved
                pickle.dump(data_dict, open(save_path, 'wb'))
                continue
            else:
                anno_obj = {}
Yizhou Wang's avatar
Yizhou Wang committed
191
192
                if config_dict['dataset_cfg']['anno_ext'] == '.txt':
                    anno_obj['metadata'] = load_anno_txt(seq_anno_path, n_frame, dataset)
Yizhou Wang's avatar
Yizhou Wang committed
193

Yizhou Wang's avatar
Yizhou Wang committed
194
195
196
197
198
199
200
201
202
                elif config_dict['dataset_cfg']['anno_ext'] == '.json':
                    with open(os.path.join(seq_anno_path), 'r') as f:
                        anno = json.load(f)
                    anno_obj['metadata'] = anno['metadata']
                else:
                    raise

                anno_obj['confmaps'] = generate_confmaps(anno_obj['metadata'], n_class, viz)
                data_dict['anno'] = anno_obj
Yizhou Wang's avatar
Yizhou Wang committed
203
204
205
206
207
208
209
210
211
212
213
                # save pkl files
                pickle.dump(data_dict, open(save_path, 'wb'))
            # end frames loop

        except Exception as e:
            print("Error while preparing %s: %s" % (seq_path, e))


if __name__ == "__main__":
    args = parse_args()
    data_root = args.data_root
yizhou-wang's avatar
yizhou-wang committed
214
    if args.split == '':
yizhou-wang's avatar
yizhou-wang committed
215
216
217
        splits = None
    else:
        splits = args.split.split(',')
Yizhou Wang's avatar
Yizhou Wang committed
218
    out_data_dir = args.out_data_dir
yizhou-wang's avatar
yizhou-wang committed
219
    os.makedirs(out_data_dir, exist_ok=True)
Yizhou Wang's avatar
Yizhou Wang committed
220
221
    overwrite = args.overwrite

yizhou-wang's avatar
yizhou-wang committed
222
    dataset = CRUW(data_root=data_root, sensor_config_name=args.sensor_config)
Yizhou Wang's avatar
Yizhou Wang committed
223
    config_dict = load_configs_from_file(args.config)
224
    config_dict = update_config_dict(config_dict, args)  # update configs by args
Yizhou Wang's avatar
Yizhou Wang committed
225
226
    radar_configs = dataset.sensor_cfg.radar_cfg

yizhou-wang's avatar
yizhou-wang committed
227
228
229
230
231
232
233
    if splits == None:
        prepare_data(dataset, config_dict, out_data_dir, split=None, save_dir=out_data_dir, viz=False,
                     overwrite=overwrite)
    else:
        for split in splits:
            if split not in SPLITS_LIST:
                raise TypeError("split %s cannot be recognized" % split)
Yizhou Wang's avatar
Yizhou Wang committed
234

yizhou-wang's avatar
yizhou-wang committed
235
236
237
238
        for split in splits:
            save_dir = os.path.join(out_data_dir, split)
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
Yizhou Wang's avatar
Yizhou Wang committed
239

yizhou-wang's avatar
yizhou-wang committed
240
241
            print('Preparing %s sets ...' % split)
            prepare_data(dataset, config_dict, out_data_dir, split, save_dir, viz=False, overwrite=overwrite)